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Abstract

We present a family of tractable dynamic global games and its applications. Agents

privately learn about a fixed fundamental, and repeatedly adjust their investments

while facing frictions. The game exhibits many externalities: payoffs may depend on

the volume of investment, on its volatility, and on its concentration. The solution

is driven by an invariance result: aggregate investment is (in a pivotal contingency)

invariant to a large family of frictions. We use the invariance result to examine how

frictions, including those similar to the Tobin tax, affect equilibrium. We identify

conditions under which frictions discourage harmful behavior without compromising

investment volume.
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1 Introduction

Many phenomena modeled as global games, be it bank runs, political revolutions, or cred-

itors’ panics, are inherently dynamic processes. Yet, the global games commonly applied

to these problems are static, simultaneous-move games. This paper develops a tractable

dynamic global game with a flexible parametrization. Under some conditions on payoff

externalities, the game reduces in equilibrium to a static global game, justifying the static

approach used in the applied literature. Under other conditions, however, the dynamic effects

prevail. In these cases, adjustment frictions can significantly affect the ex ante probability

of successful coordination, impacting welfare.

A continuum of agents interact in a coordination game where expectations of both high

and low economic activity can become self-fulfilling. Agents gradually and privately learn

about the fixed state of the economy, form expectations about the coordination outcome

of the whole economy, and perpetually adjust their investment positions. An agent’s payoff

depends on her investment path and on the outcome of the economy, which either succeeds or

fails. The outcome is a function of the state and of various statistics of investors’ behavior,

including the terminal volume of investment, the volatility of investment, the exit rate,

and the dispersion of investment across agents. Allowing for general transaction costs, we

examine how frictions impact these statistics and ultimately how they affect the likelihood

of successful coordination in equilibrium.

Our main technical contribution is the invariance result, which characterizes the volume

of aggregate investment at the end of the adjustment process in a critical state of the economy.

The state of the economy is drawn from the real line, and agents repeatedly learn about the

state from private signals. We examine monotone equilibria with a critical state such that

the economy succeeds when the realized state exceeds the critical state and fails otherwise.

The invariance result shows that aggregate investment in the critical state depends only on

a small subset of the model’s parameters. It depends only on payoffs along the two extreme

investment paths preferred by an agent who knows that the economy fails or succeeds,
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respectively. The invariance result allows us to solve for the equilibrium critical state, and

to analyze the welfare effects of frictions.

The invariance result is driven by an assumption called translational symmetry, which

requires local properties of the information structure to be independent of the realized state.

The same assumption underlies the existing solutions in static global games. For example,

selection of the risk-dominant action in Carlsson and van Damme (1993) or selection of

the Laplacian1 action in Morris and Shin (2003) are driven by this assumption. Kováč

and Steiner (2013) use the symmetry to derive a partial equilibrium characterization in

a two-stage global game. Although such a symmetry assumption drives uniqueness and

characterization results in all global-game models, our invariance result and its application

to a dynamic setting are novel.

Let us illustrate the invariance result on an emerging economy attempting to attract

foreign investments and to discourage capital reversals. Exit penalties may help achieve

the latter goal, but their effect on the investment volume is seemingly inconclusive. While

investors become less likely to exit upon receiving bad news about the economy, they are also

less likely to enter in the first place. In our model, these two effects offset each other exactly

and under general conditions (in the critical state). The volume of capital that the economy

attracts and retains is independent of the frictions. Guided by this invariance result, the

policy maker may introduce efficiency-enhancing frictions based on their effect on capital

reversals only. Section 2 develops this example further.

The invariance result provides a robustness check for the static global-game framework.

Our model distinguishes interactions in which the dynamic elements are important from

those in which static global games yield reliable predictions. When terminal investment

volume is the only determinant of the economic outcome, modelling the dynamics explicitly

does not change the predictions, and frictions do not matter. When economic success, how-

ever, depends on several statistics of investors’ behavior, as in the example of the emerging

1Morris and Shin use the term “Laplacian action” for the action preferred by an agent who has uniform
belief about the aggregate action.
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economy, the dynamic elements of our model do impact equilibrium behavior. This can be

seen in the context of another example.

Consider a dynamic extension of the currency attack model of Morris and Shin (1998). In

each period preceding the meeting of a currency board, speculators learn additional informa-

tion about the fixed state of the economy and adjust their bets on the currency devaluation.

Suppose that the board’s devaluation decision depends on the aggregate position of the spec-

ulators at the time of the meeting, but not on the history or cross-sectional distribution of

the positions. In this setting, the invariance result implies that the terminal aggregate posi-

tion is independent of the dynamic details of the game. Although the evolution of the attack

may be sensitive to dynamic details, the ex ante equilibrium probability of the attack’s suc-

cess is not. If, however, the history or cross-sectional distribution of the positions influence

the board’s decision, dynamic elements become relevant and frictions start to influence the

equilibrium prevalence of the attacks.

Our model is a compromise between the tractability of static global games and the

richness of dynamic coordination processes. We do not keep track of flow payoffs, and

thus we do not distinguish between early and late economic success. We also model social

learning in a reduced form only. In a fully-fledged model of social learning, the agents would

receive noisy signals about others’ behavior. Since this behavior reflects, in equilibrium,

the underlying state of the economy, social learning would lead to an update of agents’

beliefs about the state. We simplify the problem by treating arriving information about

the state exogenously. Such a reduced-form approach to social learning has been formalized

in Dasgupta (2007) and used in Angeletos et al. (2007), Angeletos and Werning (2006),

and Goldstein et al. (2011). We briefly study an extension with explicit social learning in

Subsection 8.4 and find that the effect of social learning can be expressed as an additive

correction to our baseline result. The correction has the natural form of an informational

externality and vanishes for some settings.

Let us now discuss our contributions beyond the invariance result. The second contribu-
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tion is to provide sufficient conditions for the existence of monotone equilibria in the dynamic

model. The main challenge is to dispense with supermodularity, an assumption which drives

existence results in static global games but whose intertemporal analog is overly restrictive.2

Our third contribution consists of a characterization result. For settings with fast learning—

that is, when the precision of the private information quickly increases across rounds—we

show equilibrium existence, provide its characterization, and prove its independence from

the assumed error distributions; see Proposition 4.

The importance of the dynamic aspects of coordination processes has been well recog-

nized. One stream of the literature focuses on dynamic adjustments to an evolving economic

environment; see Burdzy et al. (2001), or Chassang (2010). Our paper falls into the class of

dynamic models where agents learn about a fixed economic environment. In Chamley (2003),

Angeletos and Werning (2006), and Angeletos et al. (2007) agents learn from endogenous

public signals such as prices or early coordination outcomes. Since the public signals restore

common knowledge in these models, they typically exhibit equilibrium multiplicity. Das-

gupta (2007) provides a particular but tractable model of private social learning, within a

class of monotone equilibria, equivalent to the exogenous private learning process employed

in this paper. Unlike the public learning processes, the private ones preserve strategic un-

certainty and equilibrium uniqueness.

The paper is organized as follows. The next section formalizes the example of the exit tax

in an emerging economy. Section 3 describes the general model and highlights its symmetry

property. Section 4 states the invariance result. Section 5 demonstrates existence and

characterization results when agents learn fast. Section 6 analyzes an alternative tractable

setting which does not require the learning process to be fast. Section 7 studies welfare-

enhancing frictions using the invariance result. Section 8 varies payoffs and information

structure in four extensions.
2As discussed by Echenique (2004), the assumption of intertemporal strategic complementarities is very

restrictive. See Vives (2009) for a particular approach.
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Figure 1: Dynamic investment problem. The end nodes specify the terminal investments.

2 Example: Investment Reversals

Consider an emerging economy opening up to international capital. Foreign investors make

decisions at an early and an interim stage of the economic transformation. In the early stage,

each investor i ∈ [0, 1] invests 0 or 2 units. The early decisions are partially reversible at

the interim stage: those who have invested early can withdraw 1 unit, and those who have

not invested early can invest 1 unit. We use the same action labels 0 and 1 at each decision

node, as in Figure 1.

Investment is risky and costly. Investor i’s terminal payoff before tax is bi(o−1/2), where

bi = ai1 + ai2 denotes the investor’s terminal investment (or bet), o ∈ {0, 1} is the failure or

success of the economy, and 1/2 is the cost of unit investment. The outcome o is a function of

the aggregate behavior and of the state of the economy. The economy succeeds if it attracts

enough investment, and if it does not experience too large a capital reversal:

o =











1 if b− e ≥ 1− θ,

0 if b− e < 1− θ,
(1)

where b =
∫ 1
0 bidi is the aggregate terminal investment, e =

∫ 1
0 ai1(1 − ai2)di is the capital

reversal, and θ is the state of the economy.
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Consider a tax τ on the detrimental reversals, making the payoff for path ai = (ai1, a
i
2):

u
(

ai, o
)

= bi(o− 1/2)− τai1(1− ai2).

Intuitively, the tax discourages both exit and entry, and thus it reduces the reversal volume.

However, the effect on the investment volume b, and hence the total tax effect, are a priori

ambiguous.

The paper emphasizes the role of strategic uncertainty—uncertainty about the behavior

of other agents. To that end, we study the overall tax effects in a dynamic global game. The

state θ is drawn from the uniform distribution on [−1, 3]. Investors receive private signals

xi
t = xi

t+1 + ηit in each round t = 1, 2, with convention xi
3 = θ. The errors ηit are uniformly

distributed on [−σ, σ] and are independent across rounds and agents, where σ ∈ (0, 1/2) is

a scaling parameter. Investors do not observe opponents’ actions. We examine threshold

equilibria with a critical state θ∗ such that the project succeeds for θ ≥ θ∗, and fails for

θ < θ∗.

For simplicity, consider two tax levels, τ ∈ {0, 1/10}. We have verified that the game

has a unique threshold equilibrium for both tax values. We define welfare as the ex ante

expected equilibrium payoff.

Proposition 1. 1. Aggregate investment b in the critical state is independent of τ .

2. Volume of capital reversal e in the critical state decreases in τ .

3. Welfare increases in τ , when σ is sufficiently small.

The first claim follows from the invariance result applied to this example. The invariance of

the critical investment simplifies the welfare analysis of the tax. The policy maker can focus

on the tax effect on reversals without worrying about investment volume.

Let us first derive welfare as a function of the critical state θ∗, and then analyze the

equilibrium value of θ∗. The investors form private beliefs about the success of the economy,
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Figure 2: (A) Welfare equals Pr (θ ≥ θ∗) when the probability of interval I(σ) vanishes. (B)
Welfare is decreasing in the critical state.

that is, about the event θ > θ∗. When θ is outside of the interval I(σ) = [θ∗−2σ, θ∗+2σ], the

investors know the outcome in both rounds because they receive signals far enough from θ∗.

Investors invest and stay in states above the interval, and they never invest in states below.

Inside I(σ), stochastic learning leads to heterogeneous volatile investment; investment paths

10 and 01 occur. When σ is small, the ex ante probability that the realized state is in

I(σ) is negligible. Therefore, the ex ante expected utility of an investor is approximately

0× Prob(θ < θ∗) + (2− 1)× Prob(θ > θ∗) = (3− θ∗)/4. See Figure 2.

Although the critical state is realized with zero probability, the behavior at θ∗ has a large

indirect effect on welfare. This is because the equilibrium value of θ∗ is determined by the

behavior in the critical contingency itself, since the condition for success, (1), must be met

with equality in the critical state:

b∗ − e∗ = 1− θ∗,

where b∗ and e∗ are the equilibrium investment and reversal volumes b and e in the critical

state. They are computed as follows. Take an arbitrary value of θ∗ and find the optimal

strategy, solving a simple single-agent optimization problem by backward induction. Then,

use the conditional distribution of an investor’s signals, (xi
1, x

i
2) | θ

∗, and the optimal strategy

to compute the probabilities of all investment paths. These probabilities are independent of
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Figure 3: Probabilities of playing action at ∈ {0, 1} in the critical state θ∗, conditional on
reaching history h ∈ {∅, 0, 1}. (A) tax τ = 0, and (B) tax τ = 1/10.

the conjectured value of θ∗ due to the translational symmetry of the model; see Subsection

3.4 for details. Finally, use the probabilities to compute the expected values of investment

and reversals, b∗ and e∗.

The impact of the tax on the critical aggregate behavior is depicted in Figure 3. The

tax discourages both exit and entry, and thus e∗ decreases with the tax, confirming part 2

of Proposition 1. The effect of the tax on investment is less intuitive: it is invariant with

respect to the tax. Indeed, b∗ = 1 for both tax levels, confirming claim 1.3 The decrease

in b∗ caused by diminished early entry is exactly offset by the changes in behavior at the

interim stage. Thus, the critical state θ∗(τ) = 1 − b∗ + e∗(τ) = e∗(τ) is affected by the exit

tax only via the decrease of the reversal volume e∗(τ). Success probability increases with

the tax, as θ∗(0)− θ∗(1/10) > 0, and this difference is independent of σ.

The invariance of the critical investment holds in a general setting, described in the next

section.

3 The Model

We now generalize the example in various ways. The model has an arbitrary finite number

of rounds, we make no distributional assumptions on the signal errors, the payoffs allow

3Using Figure 3A, b∗ = (.5× .25)+ (.5× .25)+ 2(.5× .75) = 1. Using 3B, b∗ = (.54× .27)+ (.46× .14)+
2(.46× .86) = 1.
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for general investment incentives and transaction costs, and we allow for a broad class of

externalities.

3.1 Payoffs

A continuum of agents i ∈ [0, 1] make binary decisions ait ∈ {0, 1} in rounds t ∈ {1, . . . , T}.

We write hi for a private action path (ai1, . . . , a
i
t) up to round t = |hi|, denote the initial

history at the beginning of the game by ∅, and write zi ∈ {0, 1}T for terminal paths. When

not needed, we omit the index i. Let h(t′) be the truncation of h to the first t′ elements, and

a(h, t′) be the t′th action of h. For h = (a1, . . . , at) and h′ = (a′1, . . . , a
′
t′), hh

′ is the path

(a1, . . . , at, a′1, . . . , a
′
t′) of length t+ t′.

Agent i’s payoff u(zi, o) depends on her terminal path zi and on an outcome o ∈ {0, 1}

interpreted as the failure or success of a common project. Since the outcome is binary, the

payoffs are linear in o without loss of generality:

u(z, o) = bz × o− cz,

where bz = u(z, 1) − u(z, 0) and cz = −u(z, 0). We interpret bz as an agent’s bet on

the project’s success—the agent receives the amount bz only if the project succeeds. The

parameter cz is the cost of placing the bet via path z. In the applications, cz will include

transaction costs alongside path z.

The outcome of the project is

o =















1 if
∫ 1
0 dzidi ≥ 1− θ,

0 if
∫ 1

0 dzidi < 1− θ,

where dz is the success contribution of path z; it describes how conducive z is to success.

State θ measures the project’s propensity to succeed.

The parameters bz, cz and dz are arbitrary functions of path z, making the model very
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general. For example, it accommodates early investments being more productive than later

investments, e.g., dz = βa(z, 1) + a(z, 2) with β > 1. It allows us to analyze the role of

investment volatility and investment dispersion: in Section 7, we consider success contri-

butions dz = ϕ(bz) − λvz, where vz =
∑T

t=2 |a(z, t) − a(z, t − 1)| measures the volatility of

path z. The curvature of function ϕ determines the impact of investment dispersion on the

outcome.

3.2 Learning Process

The state θ is an unobserved random variable drawn from a uniform distribution on an

interval [θmin, θmax]. Each agent receives a private signal xi
t = xi

t+1 + σηit in each round

t = 1, . . . , T , with convention xi
T+1 = θ. Thus, xi

t is a sufficient statistic for the outcome

with respect to the private signals up to round t.4 The errors ηit are independent across

agents and rounds and have continuously differentiable density ft, and distribution Ft with

bounded support [−1/2, 1/2]. Densities ft are bounded from below by f > 0. We abuse

terminology by referring both to xi = (xi
1, . . . , x

i
T ) and to xi

t as the type of agent i. The

support of θ contains dominance regions: states below 1−maxz dz − Tσ in which all agents

in all rounds know that the project fails, and states above 1 − minz dz + Tσ in which all

agents know that the project succeeds. Thus, the respective extreme paths are dominant in

the dominance regions. Agents do not observe their opponents’ actions.

3.3 Strategies and Equilibrium

A pure strategy s is a family of functions sh(xt), one for each h ∈
⋃T−1

t=0 {0, 1}
t.5 An agent

following strategy s plays action at = sh(xt) at each private history h of length t − 1. The

4This specification simplifies the structure of strategies and notation, but is not essential for our main
result.

5While the space of xt at each round is bounded, we extend the domain of the strategies to the real
line R. The purpose is to simplify the upcoming translation arguments. Let xt and xt be the minimal and
the maximal signal of the type space at round t. We extend sh to R as follows: sh(x) = sh(x|h|+1) for all
x > x|h|+1, and sh(x) = sh(x|h|+1) for all x < x|h|+1.
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independence of the strategy at round t from signals x1, . . . , xt−1 is essentially without loss

of generality because beliefs (and hence best responses) at round t are independent of earlier

signals. We say that s is a threshold strategy if, for each path h, there exists x∗
h such that

sh(x) = 1 for x ≥ x∗
h, and sh(x) = 0 for x < x∗

h.

An outcome function O : R −→ {0, 1} specifies the outcome of the project; o = O(θ).

We say that O is a threshold outcome function if there exists a critical state θ∗ such that

O(θ) = 1 for θ ≥ θ∗, and O(θ) = 0 for θ < θ∗.6

Strategy s is a best response to outcome function O if

sh
(

x|h|+1

)

∈ argmax
a

E
[

Vha

(

x|h|+2

)∣

∣ x|h|+1

]

,

where

Vh

(

x|h|+1

)

= max
a

E
[

Vha

(

x|h|+2

)∣

∣ x|h|+1

]

, with xT+1 = θ, and Vz(θ) = bzO(θ)− cz.

To avoid ambiguity, we let agents invest in the case of a tie. Then, the best response to

any measurable outcome function O is uniquely defined. When O is a threshold outcome

function with a critical state θ∗, we simply say that s is the best response to θ∗.

Let z(x; s) be the terminal path that type x reaches if she follows strategy s. Assume

that all agents use the same strategy s. Applying the law of large numbers to the continuous

population, the aggregate success contribution
∫

dz(xi;s)di in state θ equals the conditional

expectation E
[

dz(xi;s)

∣

∣ θ
]

. We say that outcome function O is generated by a strategy s if

for θ ∈ [θmin, θmax]

O(θ) =















1 if E
[

dz(x;s)
∣

∣ θ
]

≥ 1− θ,

0 if E
[

dz(x;s)
∣

∣ θ
]

< 1− θ.

6For all outcome functions considered below we assume without loss of generality that O(θ) = 1 for
θ > θmax and O(θ) = 0 for θ < θmin. We extend the outcome function to all states on the real line for a
technical reason; it simplifies the definition of a translation of O.
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An equilibrium is a pair (O, s) such that s is the best response to O, and O is generated

by s. It is a threshold equilibrium if both O and s are threshold functions.

Our equilibrium concept is a symmetric, pure-strategy, Bayes-Nash equilibrium. Since

the agents do not observe others’ actions, the usual complications with off-equilibrium be-

liefs, common in dynamic games, do not arise. Our compromise between the fully dynamic

approach and the simultaneous-move model is in the tradition of the open-loop equilibria in

dynamic games; see Fudenberg and Levine (1988). The focus on symmetric, pure-strategy

equilibria is essentially without loss of generality. All agents optimize against a common

outcome function, and thus their best response strategies could differ, or they could use

mixed actions, only at indifferent types, which have zero measure.

3.4 Translational Symmetry

We conclude the description of the model by highlighting its translational symmetry. The

joint density of the state and the type is translation invariant:

f(θ,x) = f(θ + δ,x + δe), (2)

where e is the T -dimensional diagonal vector. The translational symmetry is implied by

the uniform prior and the additive errors. The symmetry is inherited by the best response

function: when O′(θ) = O(θ + δ), the best response s′ to O′ is the translation of the best

response s to O; s′h(x) = sh(x + δ) for all h. (The translational symmetry of f is violated

in neighborhoods of the boundary of its support. This, however, will not play a role in the

analysis, as the boundaries lie in the dominance regions in which the project either succeeds

or fails independently of agents’ actions, and the decisions are trivial. The analysis is non-

trivial only when θ is in the intermediate interval, where the translational symmetry of f

applies.)

For any variable, define its critical value as its expectation in the critical state θ∗ when
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all agents best-respond to θ∗: for instance, the critical success contribution is

d∗ = E
[

dz(x;s)
∣

∣ θ∗
]

, where s is the best response to θ∗.

Since both the joint distribution f(θ,x) and the best response function are translation

invariant, the critical value of any variable is independent of θ∗. This implies equilibrium

uniqueness within an important class of equilibria:

Lemma 1. There exists at most one equilibrium (O, s) with a threshold outcome function

O. If it exists then the critical state satisfies θ∗ = 1− d∗. Moreover, θ∗ is independent of σ.

Proofs omitted in the main text are in Appendix.

4 Invariance of the Critical Investment

This section presents the main insight of the paper—the invariance result. It states that the

terminal volume of aggregate investment in the critical state θ∗ depends solely on payoffs

received on extreme investment paths. By Lemma 1, equilibrium is determined by the

behavior at θ∗. Thus, though the invariance result applies only in the critical state, it has

strong indirect consequences on ex ante welfare.

Define the success premium

S = max
z

u(z, 1)−max
z

u(z, 0)

as the benefit gained by an informed optimizing agent when the outcome changes from failure

to success.

Though the agents in the critical state are never perfectly informed about the outcome,

the success premium S, defined by optimization under complete information, happens to

14



characterize the critical aggregate investment. Let s be the best response to θ∗ and let

b∗ = E
[

bz(x;s)
∣

∣ θ∗
]

denote the critical aggregate investment.

Proposition 2 (Invariance result). The critical aggregate investment satisfies

b∗ = S. (3)

Specifically, the critical investment is invariant to any policy that does not affect the extremal

payoffs maxz u(z, 1), and maxz u(z, 0).

The term “policy” refers to a change in the payoff parameters bz or cz.

The invariance result is useful only insofar as the threshold equilibrium exists. This

section assumes its existence, and Sections 5 and 6 contain two different sets of sufficient

conditions for the existence of the threshold equilibrium.

The result directly implies an equilibrium characterization whenever the outcome depends

on the terminal investment, but not on other aggregates such as volatility or dispersion of

investment:

Corollary 1. Suppose that dz = bz for all z, and that an equilibrium with a threshold outcome

function exists. Then:

1. the critical state θ∗ = 1− S,

2. the ex ante probability of success is invariant to any policy that does not affect the

extremal payoffs, and

3. the critical state of the dynamic game is identical to the critical state of the static

global game in which agents simultaneously choose between the two extremal paths

argmaxz u(z, 1), and argmaxz u(z, 0).
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The corollary provides a robustness check for static global games. Let us illustrate this

on the model of currency attacks by Morris and Shin (1998). A currency board makes

a devaluation decision at a pre-announced date. Prior to the decision, speculators choose

whether to short sell the currency, based on their private information. The board devaluates

the currency if the aggregate short sales exceed a level determined by economic fundamental

(specifically 1− θ). The static game of Morris and Shin is a special case of our model with

T = 1, b0 = c0 = 0, b1 = 1 and c1 ∈ (0, 1).7

In our dynamic model with T > 1, agents gradually learn about the state and repeatedly

adjust their bets on devaluation. Suppose that the board devaluates the currency if the

aggregate short-sales volume at the time of the board meeting exceeds 1−θ; in our notation,

dz = bz. See Subsection 7.1 for further formalization. A static model in which agents

simultaneously choose between short selling without further adjustments and not short selling

at all has the same equilibrium critical state θ∗ as the dynamic model because θ∗ = 1 − S

depends only on the extremal payoffs, and these are identical across the dynamic and the

static model. Thus, the static global-game framework is justified when dz = bz.

Besides modelling considerations, the invariance result has policy implications. The

critical state is independent of the transaction costs along all the non-extreme paths. Thus,

frictions in the spirit of the Tobin tax that do not impact payoffs on the extremal, non-

volatile paths do not influence the equilibrium probability of successful coordination and

welfare in this strategic situation.

4.1 Sketch of the Proof

Our proof of the invariance result emphasizes the role of strategic uncertainty. Agents

uncertain about the aggregate action find it difficult to coordinate on the efficient action

path for fear of regret from miscoordinating with others. The proof of invariance result

7Morris and Shin allow b1 and c1 to depend on the state θ. We discuss such an extension at the end of
Subsection 8.1.
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highlights the role of regret and thus naturally extends the arguments supporting the risk-

dominance criterion. Indeed, the risk dominant action in a symmetric 2× 2 game is the one

that minimizes the regret from failing to take the best response to the opponent’s action.8

We sketch the proof of the invariance result on the example from Section 2. The formal

proof is in Appendix. Fix the value of the critical state θ∗ throughout the subsection. Let

r = max
z′

u(z′, o)− u(z, o) (4)

be the regret of an investor who has chosen path z when the outcome is o. Abusing notation,

let random variable r(x, o) be an investor’s regret when she receives the series of signals x,

follows the best response s(x) against θ∗, and the outcome is o. For o ∈ {0, 1}, define

ro(θ) = Ex [r(x, o) | θ]; it is the expected regret under the optimal strategy s, when the

outcome is o, conditional on the realized state being θ.

The core of the proof is the observation that the optimal strategy equalizes expected

regret in the critical state across success and failure:

r1 (θ
∗) = r0 (θ

∗) . (5)

The invariance result is a corollary of the regret equalization. Rearranging the last equation

gives:

max
z′

u(z′, 1)−max
z′

u(z′, 0) = Ex [u(z(x), 1)− u(z(x), 0) | θ∗] .

The left-hand side is S, and the right-hand side equals Ex

[

bz(x) | θ∗
]

= b∗.

Before proving regret equalization, we discuss Figure 4. When θ $ θ∗, investors receive

low signals in both rounds, they know that the project will fail, and they do not invest.

Thus, if the outcome were a success (o = 1), as assumed in the definition of r1, they would

experience substantial regret. Accordingly, r1(θ) = 1 for sufficiently low θ. As θ increases,

8We are grateful to the anonymous referee for emphasizing this connection.
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Figure 4: A leftward translation of the strategy shifts functions r0 and r1 to the left and
decreases ex ante expected regret by area A.

an investor is more likely to draw high signals and invest, and thus her expected regret under

o = 1 decreases until it becomes null. A symmetric argument applies for r0(θ). The ex ante

expected regret corresponds to the shaded area. To see this, recall that when θ < θ∗, the

project fails (o = 0), and when θ > θ∗, the project succeeds (o = 1). Therefore, for θ < θ∗,

the relevant conditional expected regret is given by r0, and for θ > θ∗, by r1.

We prove (5) by contradiction, applying the translational symmetry of the model. Sup-

pose that the optimal strategy s does not equalize regrets, as in Figure 4a, where r1(θ∗) >

r0(θ∗). Translation of the threshold strategy s to the left, i.e. reduction of all the thresholds

x∗
h by the same amount, shifts the regret functions r0 and r1 to the left. The translated

strategy results in a lower expected regret, since the shaded area in Figure 4b is reduced by

the area A. By the definition in (4), expected regret is obtained by subtracting expected

utility from a constant. If expected regret has decreased, then expected utility has increased,

contradicting the optimality of the original strategy s.

5 Fast Learning

This section presents one of the tractable specifications of the general model. We establish

equilibrium existence and characterization under mild restrictions on the payoffs, when the

18



precision of agents’ information increases greatly in each round. Section 6 contains an alter-

native tractable specification that does not restrict the information structure but imposes

stronger conditions on payoffs.

We model fast learning by letting xi
t = xi

t+1+σtηit, with xi
T+1 = θ, keeping densities ft(ηt)

fixed, and we send σ → 0. The property of fast learning driving the results of this section is

that the ratio of signal precisions across two rounds diverges as σ → 0.9 We treat the limit

of σ → 0 casually in the main text and relegate detailed proofs to Appendix.

We prove the existence of a threshold equilibrium under the following two assumptions:

A1: For all histories h,

max
h′

u(h1h′, 1) > max
h′

u(h0h′, 1),

max
h′

u(h1h′, 0) < max
h′

u(h0h′, 0),

where h′ ∈ {0, 1}T−|h|−1 is a continuation path.

A2: For all histories h, dh1h′ > dh0h′ where h′ is an extreme continuation history 11 . . . 1 or

00 . . . 0 of length T − |h|− 1.

Assumption A1 requires that an agent certain of success prefers action 1 while an agent

certain of failure prefers 0. Assumption A2 restricts investing to contribute to success more

than not investing, but only for the extreme continuation paths. A2 is relatively weak as

it leaves the ranking of success contributions on most paths unspecified, thus allowing for

considerable modelling freedom.

Proposition 3. There exists σ > 0 such that the game has a unique threshold equilibrium

for each σ ∈ (0, σ].

Lemma 1 has established equilibrium uniqueness. To prove existence, we show in Ap-

pendix that the best response s to θ∗ generates a non-decreasing expected success contribu-

tion d(θ) = E
[

dz(x;s)|θ
]

. Thus, there must be a state at which the project transitions from

failure to success. The main complication is that typical paths in a neighborhood of θ∗ are

9The propositions hold if xi
t = xi

t+1 + σk(t)ηit where k is an increasing function.
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volatile, and thus assumption A2 does not rank their success contributions. The analysis

is simplified when learning is fast. Then each agent at any point of the game assigns very

high probability to her knowing the outcome in future rounds. Hence, when learning is fast,

agents believe that their continuation play will be alongside the extreme paths 11 . . . 1 or

00 . . . 0. The incomplete ranking in A2 then suffices to establish the monotonicity of d(θ).

We now characterize the threshold equilibrium. Consider the best response to a critical

state θ∗. As σ vanishes, an agent choosing action a at path h expects to receive payoff

bha1...1 − cha1...1 if the project succeeds and −cha0...0 if it fails. She invests if and only if she

assigns probability at least p∗h to success, where p∗h solves the indifference condition

(bh11...1 − ch11...1) p
∗
h − ch10...0 (1− p∗h) = (bh01...1 − ch01...1) p

∗
h − ch00...0 (1− p∗h) . (6)

Assumption A1 guarantees that p∗h ∈ (0, 1).

Under Lemma 1, θ∗ is characterized by agents’ behavior in the critical state, θ∗ = 1− d∗.

To compute the critical success contribution d∗, we analyze the distribution of posterior

beliefs at θ∗. Let qt(xt) = Pr (θ ≥ θ∗| xt) be the posterior success probability evaluated by

type xt in round t. In the critical state, the posterior beliefs reflect solely the noise in the

private signals rather than information about the outcome. Guimaraes and Morris (2007)

and Steiner (2006) show that the posteriors are uniformly distributed in the critical state;

qt(xt)|θ∗ ∼ U [0, 1] for any specification of the error distribution.10

In the critical state, and at each history h, an agent chooses action 1 with probability

Pr (qt ≥ p∗h|θ
∗) = 1 − p∗h. Additionally, as σ → 0, the posterior beliefs qt are independent

across rounds. Thus, the limit probability that an agent reaches a terminal path z is

lz =
T
∏

t=1

[

a(z, t)
(

1− p∗z(t−1)

)

+ (1− a(z, t))p∗z(t−1)

]

, (7)

10The proof is as follows: let α = xt − θ be the error and A its c.d.f. Then Pr(qt(xt) < p|θ∗) = Pr(xt <
θ∗ +A−1(p)|θ∗) = Pr(α < A−1(p)) = A

(

A−1(p)
)

= p.
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where, as before, a(z, t) denotes t’th action on the path z and z(t − 1) is the truncation of

z to the first t− 1 rounds. In summary:

Proposition 4. Independent of the assumed error distributions, limσ→0 θ∗(σ) = 1−
∑

z dzlz,

with the limit critical probabilities lz of reaching the terminal path z defined in (6) and (7).

6 General Learning

This section presents a setting with a general learning process, without relying on the limit

of fast learning. The setting is a small perturbation of a simple frictionless specification. We

will show that the equilibrium of the perturbed game is a small perturbation of the threshold

equilibrium of the frictionless game.

The agents face incentives

bz =
T
∑

t=1

a(z, t), and cz = cbz + τ
T
∑

t=2

1a(z,t)=r(z(t−1)),

with c ∈ (0, 1) and where a general tax penalizes arbitrarily specified action r(h) ∈ {0, 1}

at each path h #= ∅. The success contributions are dz = bz − λvz, where, unlike before,

“volatility” vz is arbitrarily specified for now. The information structure is the same as in

the baseline model, xi
t = xi

t+1 + σηit, where σ is a fixed constant.

The threshold equilibrium exists when τ = λ = 0.11 Under Corollary 1, the critical state

θ∗ = 1 − S = 1 − T (1 − c). When τ or λ are positive, the threshold equilibrium may fail

to exist, as the best response to θ∗ need not be a threshold strategy, or expected success

contribution may fail to be monotone when the best response is history dependent. However,

a threshold equilibrium exists if the frictions and the impact of volatility are low:

11The best response s to θ∗ is a threshold strategy, because an agent invests in each round, if and only if
her posterior belief that θ ≥ θ∗ is at least c. The best response s generates a threshold outcome function
because expected success contribution E[dz(x;s)|θ] = E[bz(x;s)|θ] is non-decreasing in θ.
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Proposition 5. There exist τ and λ such that the game has a unique threshold equilibrium

for all (τ,λ) ∈ [0, τ ]× [0,λ].

In the remainder of this section we consider a tax system that punishes entries and exits:

r(h) = 1 − a(h, |h|) for all histories h $= ∅ (recall that a(h, |h|) denotes the last action of

history h). We provide a sufficient condition on volatility vz under which a small tax fosters

success. The condition requires that repeating an action from round t−1 at round t leads to

weakly lower volatility than does switching the action, regardless of the continuation path:

A3: For any path h and continuation path h′ such that |h|+ 1 + |h′| = T ,

vhãh′ ≤ vha′h′ , (8)

where ã = a (h, |h|) is the last action of h, and a′ = 1− ã is the opposite action.

For instance, vz can be the number of exits and entries,
∑T

t=2 |at−1 − at|, number of “exits”,
∑T

t=2 max {0, at−1 − at}, number of “entries”,
∑T

t=2 max {0, at − at−1}, or vz can increase

non-linearly with the number of entries and exits on the path z.

Assume that λ > 0 is sufficiently small so that Proposition 5 assures existence of the

threshold equilibrium for small enough τ . Then:

Proposition 6. If volatility vz satisfies A3, then a small tax penalizing exits and entries

fosters success:
d

dτ
θ∗(τ)

∣

∣

∣

∣

τ=0

≤ 0,

with strict inequality if inequality (8) is strict for some path h.

The proof relies on the invariance result. As tax does not affect the extremal payoffs,

the critical investment is independent of τ . Thus it only remains to prove that the critical

volatility decreases in τ .

See Subsection 7.2 for a further discussion of frictions and volatility of investment.
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7 Applications

This section studies particular settings with partially irreversible investments and decreasing

investment opportunities. These can describe an emerging economy that opens a sector to

foreign investors, a currency market prone to attack by speculators, or a political revolution.

The project outcome depends on the terminal aggregate investment, and possibly on its dis-

tribution across investors and its historical volatility. In one application, we study the effect

of small frictions similar to a Tobin tax. We focus on the limit of fast learning throughout

the section.

Partial irreversibility of investment is the rule rather than the exception, as there is a

wedge between the prices at which one can buy and sell capital (Hartman and Hendrickson,

2002). This can be caused by installation costs, transaction costs, or by informational

frictions. Arrow (1968) and Abel et al. (1996) propose related arguments that make a case

for partial irreversibility. Caballero et al. (1995) present data from U.S. manufacturers that

support some degree of irreversibility. Furthermore, investment opportunities are hardly

constant over time. In many sectors of emerging economies, such as the construction of

infrastructures, investment opportunities decrease over time.

We model partial irreversibility and declining opportunities as follows. In each round,

each investor decides whether to enter/stay in the project or exit/stay out of the project.

An investor who enters in round tin invests T +1− tin units, and withdraws T +1− tout units

if she exits the project at round tout. Therefore, an agent repeatedly entering and exiting

at rounds tin1 < tout1 < tin2 < tout2 < · · · < tinK < toutK has committed to the total investment
∑K

k=1 t
out
k − tink at the end of the game. We assign label 1 to the action of entering/staying

in, and 0 to the action of exiting/staying out. An agent receives payoff 1/T per unit of

investment if the project succeeds. Thus, the investor’s total investment is

bz =
1

T

T
∑

t=1

a(z, t). (9)
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The model can also be interpreted as one where each agent decides in each round whether

to participate in the project in the current round, and her total investment is proportional

to the number of rounds in which she has participated.

Costs and volatility are defined as

cz = cbz + τvz, where vz =
1

T

T
∑

t=2

|a(z, t)− a(z, t− 1)| , (10)

and c+τ < 1, so that A1 holds throughout this section. In words, the unit cost of investment

is c/T with c ∈ (0, 1), and the agent pays penalty τ/T ≥ 0 per entry or exit. Entry at round

1 is not penalized (except in Subsection 7.4).

We assume incentives (9) and (10) in all the subsequent applications, and examine dif-

ferent externality structures, with general specification:

dz = ϕ(bz)− λvz,

where ϕ is increasing. In the context of developing countries, the positive relationship

between success and investment volume is supported by the literature on Foreign Direct

Investment. Oliva and Rivera-Batiz (2002) and de Mello (1997) provide evidence that FDI is

associated with growth and economic success. Parameter λ measures the impact of volatility

and the curvature of ϕ captures the impact of investment dispersion on the outcome. We

assume that λ ∈ [0, 1/2) and 2λ < ϕ′(b) for every b. Then A2 holds and the game has a

unique threshold equilibrium in all four applications for sufficiently small σ.

7.1 Reduction to the Static Game

In this application, the outcome depends only on the terminal aggregate investment: dz = bz.

Thus, this scenario formalizes our discussion of the currency attacks from Section 4. Corollary

1 implies:
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Proposition 7. The critical state θ∗ = 1− S = c. Thus, the outcome of the dynamic game

is the same as the outcome of the static game in which agents simultaneously choose among

the two extreme paths.

In this setting, the dynamic features of the model are unimportant, and the tax is ineffective.

In the subsequent applications, the outcome depends on additional aspects of investment

behavior, apart from its terminal volume. Thus, Corollary 1 cannot be applied, and the

dynamic model does not reduce to a static game. Yet, the invariance result will be helpful

because it implies that the tax affects the equilibrium only via aggregates of behavior other

than the terminal investment volume.

7.2 Frictions and Volatility of Investment

In this application, we examine the stabilizing role of frictions under the assumption that

economic turmoils have a negative impact on economic success. In particular, we analyze

policies that are reminiscent of Tobin’s proposal to “throw some sand in the wheels” of

the economy.12 The rationale behind these policies can be traced back to Pigou’s sugges-

tion to tax actions that generate negative externalities. For example, frictions may deter

volatile or other harmful investment patterns. However, a policy maker may worry that

the negative effect of frictions on the investment volume may dominate the benefits of re-

duced volatility. Our invariance result dispels such worries: the policy maker may introduce

efficiency-enhancing frictions based solely on their effect on capital reversals.

There is ample evidence that investment volatility hampers successful economic outcomes.

Lensink and Morrissey (2006) provide empirical evidence that the volatility of FDI has a

negative effect on growth in developing countries. The authors propose several explanations

for this relationship; one of them is the impact of FDI on R&D. Their study is corroborated

by other papers that show that economic volatility in general, to which the volatility of FDI

contributes, is detrimental to growth (e.g. Ramey and Ramey, 1995; Mobarak, 2005) and

12See Tobin (1978).
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to welfare (e.g. Pallage and Robe, 2003). The problem is similar for microeconomic units.

Froot et al. (1993) and Minton and Schrand (1999) show that cash flow volatility disturbs

and reduces capital expenditure, expenses in R&D, and advertising. In view of those studies,

we assume that volatility ceteris paribus hampers the outcome of the project: dz = bz − λvz

with λ > 0.

Using Proposition 4, we compute the distribution of terminal paths z in the critical state,

and thus also the critical volatility v∗ defined as E[vz | θ∗], as a function of the tax τ . As one

would expect, the critical volatility v∗ decreases in τ . At the same time, the invariance result

implies that the critical investment b∗ is unaffected by τ . The next proposition combines

these arguments, formalizing Tobin’s intuition:

Proposition 8. A small transaction cost τ increases success incidence (and thus welfare):

d

dτ
θ∗(τ)

∣

∣

∣

∣

τ=0

< 0.

7.3 Frictions and Concentration of Investment

In this application, we focus on the cross-sectional distribution of investment across agents

at the end of the game. The management and finance literature (e.g. Carlin and Mayer,

2003; Huddart, 1993) has pointed out several channels through which the concentration of

investment may affect the outcome of a project. Investment concentrated among a few

investors may help mitigate free-riding associated with monitoring of the project. On the

other hand, dispersed investment is beneficial when delegation from investors to managers

fosters success, as small investment levels make such delegation credible.

To capture such effects, we consider success contributions dz = ϕ(bz) with ϕ increasing

and convex or concave—in the convex case concentrated investment fosters and in the concave

case hampers the success.

Let us analyze how frictions affect the distribution of investment across agents in the

critical state. As before, the terminal volume of investment is invariant to frictions. The
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distribution of investment, however, varies with frictions. When the tax is low, agents switch

actions often and arrive at investment dispersed among many investors. When the tax is

high, investment will be concentrated among those investors who, by accident, happened

to be optimistic at the beginning of the game and have invested. Because of the high

frictions, they tend to stay in the project and arrive at high investment levels. The next

lemma formalizes this using the concept of mean-preserving spread of Rothschild and Stiglitz

(1970).

Lemma 2. Consider τ, τ ′ ∈ [0, 1 − c), τ < τ ′. The limit distribution of bz|θ∗ under τ ′ is a

mean-preserving spread of the limit distribution of bz|θ∗ under τ .

Thus, the effect of the frictions on the ex ante success probability is unambiguous when

ϕ is convex or concave:

Proposition 9. 1. If concentrated investment ceteris paribus fosters success then fric-

tions increase success incidence: if ϕ is convex, then θ∗(τ) is decreasing in τ .

2. If concentrated investment ceteris paribus hampers success then frictions decrease suc-

cess incidence: if ϕ is concave, then θ∗(τ) is increasing in τ .

7.4 Long-Horizon Games

Finally, we assume that both the cross-sectional distribution and the volatility of investment

influence the outcome. Let the success contribution be dz = ϕ(bz)− λvz with ϕ increasing,

twice differentiable, but not necessarily convex or concave. We abandon the simplifying

assumption that investment in the first round is not penalized. We count investment in

round 1 as entry; i.e. we set a(z, 0) = 0 for all z, and let vz =
1
T

∑T
t=1

∣

∣a(z, t)− a(z, t− 1)
∣

∣.

We study long-horizon games, T → ∞. The invariance result applies in this case in a

stronger form. First, unlike in the finite-horizon games, the small entry penalty does not

distort the critical investment b∗. When investors pay an entry penalty in the first round,

the invariance of b∗T does not hold for finite T because the payoff for the extreme path 11 . . . 1
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varies with τ . However, as T becomes large, the aggregate investment b∗T = ST = 1− c− τ
T

approximates 1− c; the first-round entry penalty becomes negligible.

Second, the effect of frictions on the distribution of investment, emphasized in the previ-

ous subsection, diminishes for large horizons. When agents adjust to their randomly evolving

posteriors in many rounds, the law of large numbers applies and the dispersion in the number

of rounds that agents spend in the project vanishes. Therefore, the first part of the critical

success contribution, E[ϕ(bz)|θ∗] converges to ϕ (E[bz|θ∗]) = ϕ(1 − c), as T → ∞, which is

independent of τ .

Finally, we find that the effect of frictions on volatility is large and non-vanishing in long-

horizon games. We explicitly compute the distribution of terminal paths z in the critical

state, and show in Appendix that v∗T converges to 2(1−c)c
1+2τ , as T → ∞. The next proposition

summarizes this:

Proposition 10. Frictions foster success incidence in long-horizon games:

lim
T→∞

θ∗(T ) = 1− ϕ(1− c) + λ
2(1− c)c

1 + 2τ
,

where the right-hand side decreases in τ .

In long-horizon games, frictions do not significantly affect the volume of aggregate invest-

ment, nor its dispersion across investors. Yet, the frictions significantly reduce the volatility

of investment in the critical state, thus increasing equilibrium welfare.

8 Extensions

This section explores the robustness of the invariance result to assumptions on information

and payoffs. Subsection 8.1 proves the invariance result in the presence of public information

when the precisions of private signals diverge. Subsection 8.2 has an auxiliary role; it contains

an alternative proof of the invariance result for our baseline setting. In Subsection 8.3,
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we extend the proof to explore the impact of public information with high precision. In

Subsection 8.4, we dissociate the effects of social learning from the effects studied in this

paper. Subsection 8.5 allows for multiple project outcomes.

8.1 Negligible public information

Frankel et al. (2003) prove that the impact of public information on equilibrium behavior

vanishes in static global games as the precision of private signals diverges. This insight

extends to our dynamic game.

We model public information as a non-uniform common prior φ(θ). Fix the critical state

θ∗ throughout this subsection and let s(φ, σ) denote the best response to θ∗ under the prior

φ and the scaling of errors σ. Let b∗(φ, σ) = Eφ,σ

[

bz(x,s(φ,σ)) | θ∗
]

be the critical investment

in this environment.

Proposition 11. Suppose the prior density φ(θ) has a bounded support and is continuous.

The invariance result holds as the private errors vanish: limσ→0 b∗(φ, σ) = S.

Similarly, we conjecture that the invariance result extends to settings in which the trans-

lational symmetry of the model is violated by dependence of bz(θ) and cz(θ) on θ. If bz(θ)

and cz(θ) are continuous then they are approximately constant on a small neighborhood of

θ∗ and the invariance result (approximately) applies for small enough σ.

8.2 Alternative proof of the invariance result

As an introduction to the next three subsections, we sketch an alternative proof of the

invariance result for our baseline setting. Subsequent subsections extend the proof in three

directions.

Define

U (τθ, τx) = E
[

u
(

z (x+ τxe) , O (θ + τθ)
)]

,
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where z(x) is the terminal path reached by type x who follows equilibrium strategy. To un-

derstand the definition, first note that U (0, 0) is the expected equilibrium payoff. Generally,

U (τθ, τx) is the expected payoff of an agent who follows the equilibrium strategy s(x) and

the project succeeds when O(θ) = 1 but the joint density of (θ,xi) is f (θ − τθ,xi − τxe)

instead of f (θ,xi).

We establish the invariance result by examining derivatives of U at point (0, 0). First,

optimality of the equilibrium strategy implies

∂

∂τx
U (τθ, τx) = 0. (11)

Second,
∂

∂τθ
U (τθ, τx) =

b∗

θ − θ
, (12)

because a small rightward translation of the marginal density of θ yields benefit bz(xi) to

agent i when the realized θ ≈ θ∗. Last,

d

dτ
U (τ, τ) =

S

θ − θ
. (13)

To see this, consider the translation of the joint density of (θ,x) by ∆ in the direction of

the diagonal vector. Such translation increases the probability that an agent receives payoff

maxz u(z, 1) by ∆
θ−θ

, it decreases the probability that an agent receives payoff maxz u(z, 0)

by ∆
θ−θ

, and the probability that θ is in the intermediate region I, in which agents misco-

ordinate, is unmodified; see Figure 2. Overall, the translation leads to a welfare change of

(maxz u(z, 1)−maxz u(z, 0))
∆
θ−θ

. The combination of the last three equations implies the

invariance result.

30



8.3 Non-negligible public information

Next, we examine public information that is sufficiently precise to impact the equilibrium

behavior. We sketch the extension on a well-known static regime-change game for which we

establish a new insight. We discuss dynamic games at the end of the subsection.

Consider the static benchmark setting of Angeletos, Hellwig, and Pavan (2007): agents

i ∈ [0, 1] simultaneously choose actions ai ∈ {0, 1} after they have received private signals

xi = θ+εi, and a public signal y = θ+η with mutually independent and normally distributed

errors εi ∼ N(0, 1
α
), and η ∼ N(0, 1

β
). Payoff for action 0 is 0, it is 1 − c for action 1 if the

joint investment succeeds, and −c if it fails. The investment succeeds if the aggregate action

a =
∫ 1

0 aidi ≥ 1− θ. Angeletos, Hellwig, and Pavan show that if α > β2

2π then the game has a

unique equilibrium, which is monotone and symmetric. Below, we consider signal precisions

satisfying the last inequality.

The invariance result implies that, in the absence of the public signals, the aggregate

action a is S = 1 − c at θ∗. The presence of the public signal y disturbs the translational

symmetry, and thus the invariance result does not hold for a fixed value of y. Yet, as argued

below, the invariance result holds in a weaker form, after an aggregation across y.

Assume that θ is drawn from a uniform distribution on [θ, θ] so that the joint density of

(θ, y, xi) is
φ(

√
β(y−θ))φ(

√
α(xi−θ))

θ−θ
. Let the support of the prior overlap with the dominance

regions and consider high precisions α and β so that the standard errors of the signals are

negligible compared to the support of the prior.13

Let θ∗(y) and x∗(y) be the equilibrium critical state and the threshold private signal as

a function of the realized public signal y. Let the set Θ∗ = {(θ, y) ∈ R2 : θ = θ∗(y)} be the

graph of the function θ∗(y). The invariance result generalizes as follows:

Pr
[

xi ≥ x∗(y) | (θ, y) ∈ Θ∗] = S = 1− c. (14)

13We ignore the effects implied by the finite support of the prior distribution. This can be formalized
either by sending the signal precisions to infinity or by enlarging the support of the prior to infinity.
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Figure 5: Critical state θ∗ as a function of the public signal y, for c = 1/3. Fraction α
β2 is

kept constant, and precisions α and β diverge. The influence of y on θ∗ does not disappear
in the limit. We show that θ∗(y) intersects with the diagonal at 1− S = c.

The left-hand side generalizes the critical investment b∗.14

The generalized invariance result (14) can be used to find the ex ante success probability

when both signals are highly precise: Consider a diverging series of precisions αk, βk with

a fixed ratio αk

β2
k

> 1
2π so that the equilibrium is monotone and unique for every k. Figure 5

depicts θ∗k(y) as k → ∞ and demonstrates that the impact of the public signal on equilibrium

behavior does not vanish in the limit. When the precision of the public signal is high then

the marginal probability density of (θ, y) is concentrated in a neighborhood of the diagonal.

Hence, for large k,

S = Pr
[

xi ≥ x∗(y) | (θ, y) ∈ Θ∗
k

]

≈ Pr
[

xi ≥ x∗(y) | θ = θ∗∗k
]

,

where θ∗∗k is the solution of θ∗k(y) = y. Moreover, the condition for the successful outcome

must be met with equality in the critical state, and thus S ≈ 1− θ∗∗k . Therefore, limk θ∗∗k =

1−S = c, and the ex ante probability of successful coordination converges to θ−c

θ−θ
as k → ∞.

The proof of the invariance result from the previous subsection extends to this setting

as follows. Let z(xi, y) be the terminal node reached by agent i, and let O(θ, y) be the

14Note that the conditioning event Θ∗ has 0 probability. We define the conditional probability as
limδ→0 Pr

[

xi ≥ x∗(y) | (θ, y) ∈ Θ∗
δ

]

, where Θ∗
δ
= {(θ, y) : ∃δ′ ∈ [0, δ] s.t. (θ + δ′, y + δ′) ∈ Θ∗}.
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equilibrium outcome function. Define again

U (τθ, τx) = E
[

u
(

z
(

xi + τx, y + τθ
)

, O (θ + τθ, y + τθ)
)]

,

where the triple (θ, y, xi) is the random variable. It is the ex ante expected payoff when the

density of (θ, y, xi) is f (θ − τθ, y − τθ, xi − τx).

Equations (11) and (13) from the previous subsection apply in this setting without mod-

ification. In the latter case, the introduction of the random public signal together with

the uniform marginal distribution of θ reintroduces translational symmetry, and thus (13)

follows from the same argument as in the previous subsection. Equation (12) generalizes as

∂

∂τθ
U (τθ, τx) =

1

θ − θ
E
[

ai(xi, y) | (θ, y) ∈ Θ∗] . (15)

As in the previous subsection, a small translation of the joint density of (θ, y) affects agents

when the realized θ ≈ θ∗(y), but, as θ∗(y) now depends on the public signal, the conditioning

event has been generalized from the singleton {θ∗} to the set Θ∗. The combination of the

three equations implies (14).

We have used a static example in this subsection. The restriction to the static-regime

change game enabled us to use the existence of monotone equilibrium established by Angele-

tos, Hellwig, and Pavan. The derivation of (14), however, does not rely on the static setting,

and can be extended to dynamic settings if the existence is established by alternative means.

8.4 Social learning

Our baseline model abstracts from social learning. This subsection illustrates in an example

that social learning has an equilibrium impact on the coordination outcome, but the effect

of social learning can be separated from those studied in this paper. Further, the effect of

social learning vanishes in the limit of fast learning.

Consider a specification of our model with T = 2, bz = dz = a1+a2
2 , and cz = cbz,
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c ∈ (0, 1). In the benchmark case without social learning, b∗ = S = 1 − c and θ∗ = c. We

now introduce social learning: each agent i observes in round 2, apart from her private signal

xi
2, a first-round action aj1 of a random agent j uniformly drawn from the set of agents, with

the draws independent across i.

A threshold equilibrium consists of the critical state θ∗ and five threshold signals: x∗(∅)

and x∗(ai1, a
j
1) where (ai1, a

j
1) ∈ {0, 1}2. Agents in round 1 choose action 1 if xi

1 ≥ x∗(∅).

They choose action 1 in round 2 if they have played ai1, observed aj1, and received a signal

xi
2 ≥ x∗(ai1, a

j
1).

Let z(xi, xj
1) be the terminal node reached by agent i if both i and j follow the equilibrium

strategy, and let O(θ) be the equilibrium outcome function. Define

U (τθ, τi, τj) = E
[

u
(

z
(

xi + τie, x
j
1 + τj

)

, O (θ + τθ)
)]

.

It is the expected payoff of agent i when the density of
(

θ,xi, xj
1

)

is f
(

θ − τθ,xi − τie, x
j
1 − τj

)

.

Using the same arguments as in Subsection 8.2, and evaluating the derivatives at (0, 0, 0)

we get: ∂
∂τi

U (τθ, τi, τj) = 0, d
dτ
U (τ, τ, τ) = S

θ−θ
, and ∂

∂τθ
U (τθ, τi, τj) = b∗

θ−θ
. Combining all

three equations we get:

b∗ = S − (θ − θ)
∂

∂τj
U (τθ, τi, τj) .

The invariance result is amended by the second term on the right-hand side that captures

the informational externality of social learning.

Detailed exploration of the new term is beyond the scope of this work. In a parallel project

of one of the authors, Loeper et al. (2012) explore a setting in which the social learning term

dominates the first term. This happens when poorly informed followers observe the actions of

highly informed leaders. If, as in Section 5, the late signals are very precise compared to the

early signals, the social learning term vanishes. This is because, in the limit of fast learning,

the observation of an opponent’s early action conveys negligible information compared to

one’s own late signal and thus the derivative on the right-hand side vanishes.
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8.5 Many outcomes

The investment outcome is binary in the baseline setting. In many applications, however,

investments may result in various degrees of success.

Consider a static setting with T = 1, dz = bz = z, z ∈ {0, 1}, and cz = cbz , c ∈ (0, 1). As

before u(z, o) = bzo− cz, but the outcome o can attain three values:15

o =































1 if b ≥ 1− θ,

λ if 1− θ > b ≥ 1/2− θ,

0 if 1/2− θ > b,

with λ ∈ (0, 1). This setting can be solved as a standard static global game following Morris

and Shin (2003). Our alternative solution method based on an extension of the invariance

result has the advantage of being extendible to dynamic settings; see the discussion at the

end of the subsection.

In line with Morris and Shin (2003), the game has a unique equilibrium, which is mono-

tone. Thus, there exists θ∗ and θ
∗
such that O(θ) = 1 if θ ≥ θ

∗
, O(θ) = λ if θ

∗
> θ ≥ θ∗,

and O(θ) = 0 if θ∗ > θ. The invariance result generalizes as:

λb∗ + (1− λ)b
∗
= S = 1− c, (16)

where b∗ = E[bz(x) | θ
∗] and b

∗
= E[bz(x) | θ

∗
].

To derive (16), define U(τ , τ , τx) to be the expected payoff when agents follow a strategy

with threshold x∗ − τx, and two thresholds in the outcome function, θ∗, θ
∗
, are replaced by

θ∗ − τ , θ
∗
− τ , respectively. As before, U(0, 0, 0) is the equilibrium welfare.

Evaluate all derivatives at point (0, 0, 0). Using the same arguments as in the previous

subsections, ∂
∂τx

U(τ , τ , τx) = 0, and d
dτ
U(τ, τ, τ) = S

θ−θ
. Moreover, ∂

∂τ
U(τ , τ , τx) = λb∗

θ−θ

15Extension to arbitrarily many finite values is immediate.
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because a small leftward shift in θ∗ yields benefits λ to all agents who have invested in

contingencies θ ≈ θ∗. Similarly, ∂
∂τ
U(τ , τ , τx) =

(1−λ)b
∗

θ−θ
. The combination of all four equations

of this paragraph implies (16).

The criticality condition generalizes as b∗ = 1/2− θ∗ and b
∗
= 1 − θ

∗
. Moreover, θ∗ and

θ
∗
converge to the same limit as σ → 0, which we denote by θ∗.16 From now on we examine

the limit σ → 0 (we abuse notation by not distinguishing b∗(σ), b
∗
(σ) from their limits).

The limit criticality conditions are

b∗ = 1/2− θ∗, (17)

b
∗
= 1− θ∗. (18)

The system of three linear equations (16), (17), and (18) for three unknowns, b∗, b
∗
, and θ∗

implies θ∗ = c− λ/2.

Equations (16), (17), and (18) hold unmodified in threshold equilibria of dynamic settings

with many rounds. Thus, when the threshold equilibrium exists, the method extends to our

dynamic model.

9 Conclusion

This paper presents a tractable dynamic global game in which agents privately learn from

an exogenous stream of information and repeatedly adjust their actions. The framework is

sufficiently rich to allow for the design of welfare-enhancing frictions. The design problem is

simplified by the fact that aggregate investment (in a critical contingency) is invariant to a

large family of frictions. Thus, a policy maker, using frictions to influence the volatility or

concentration of investment, need not worry about compromising the volume of investment.

Relying on this insight, we have characterized the impact of a simple friction on the

16To see this, notice that θ∗, θ
∗
∈ (x∗ − σ, x∗ + σ).
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coordination outcome in various economic situations. Small switching costs foster successful

coordination when the economy benefits from a reduction of volatility or from concentrated

investment. Frictions are irrelevant when the history and cross-sectional distribution of

investment do not impact the economic outcome. When the economy benefits from dispersed

investment, switching costs hamper the coordination outcome.

Invariance of critical aggregate investment is driven by the same assumption as the well-

known characterization results in static global games—by the translational symmetry of

the model. The paper extends our understanding of the consequences of the translational

symmetry assumption from static to dynamic settings, thus significantly expanding the range

of possible global game applications.

A Proofs

A.1 Proof for Section 3

Proof of Lemma 1. Consider an equilibrium with critical state θ∗. Then E
[

dz(x;s)
∣

∣ θ
]

≥ 1−θ

for all θ > θ∗, and E
[

dz(x;s)
∣

∣ θ
]

< 1 − θ for θ < θ∗. Continuity of E
[

dz(x;s)
∣

∣ θ
]

with respect

to θ implies 1 − θ∗ = E
[

dz(x;s)
∣

∣ θ∗
]

= d∗. The right-hand side is independent of θ∗, as

discussed at the end of Section 3.4. Moreover, d∗ is also independent of σ as the model is

scale invariant: under two values σ and σ′, the best responses to θ∗ satisfy sh (θ∗ + σε; σ) =

sh (θ∗ + σ′ε; σ′), and therefore Prσ (z(x; s(σ)) = z′| θ∗) = Prσ′ (z(x; s(σ′)) = z′| θ∗) for any

terminal path z′.
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A.2 Proof for Section 4

Proof of the Invariance Result. We will prove that an agent’s expected regret in the critical

state θ∗ is independent of the outcome: defining regret as

R(z, o) = max
z′

u(z′, o)− u(z, o), (19)

we prove that if agents play best-response s to θ∗ then the expected regret is equalized across

the success and the failure in the critical state θ∗:

E
[

R
(

z(x; s), 1
)∣

∣ θ∗
]

= E
[

R
(

z(x; s), 0
)∣

∣ θ∗
]

. (20)

Rearranging (20) immediately gives the invariance result:

max
z′

u(z′, 1)−max
z′

u(z′, 0) = E
[

u
(

z(x; s), 1
)

− u
(

z(x; s), 0
)∣

∣ θ∗
]

= E
[

bz(x;s)
∣

∣ θ∗
]

.

The left-hand side is S, which establishes (3), as needed.

The regret equalization (20) is implied by the following: once the agent optimizes her

strategy s against θ∗, her ex ante expected regret cannot be decreased by a change in θ∗:

E
[

R
(

z(x; s), 1θ≥θ̃∗

)]

≥ E
[

R
(

z(x; s), 1θ≥θ∗
)]

, (21)

where 1θ≥θ̃∗ is the threshold outcome function with the critical state θ̃∗. Before we derive

(21), we first show how it implies (20).

Consider two thresholds θ∗ and θ∗ + δ, δ > 0. Since the outcome O(θ) differs only when

θ ∈ [θ∗, θ∗ + δ],

E
[

R
(

z(x; s), 1θ≥θ∗
)]

− E
[

R
(

z(x; s), 1θ≥θ∗+δ

]

=
∫ θ∗+δ

θ∗
E
[

R
(

z(x; s), 1
)

−R
(

z(x; s), 0
)∣

∣θ
] dθ

θmax − θmin

.
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The left-hand side is non-positive for any δ by optimality of θ∗, (21). Since E
[

R
(

z(x; s), o
)∣

∣ θ
]

is continuous in θ, we have proved that

0 ≥ E
[

R
(

z(x; s), 1
)

−R
(

z(x; s), 0
)∣

∣θ∗
]

.

Considering δ < 0 leads to the opposite inequality.

The last step of the proof, the derivation of (21), relies on the translational symmetry

of the model, on (2). For any strategy ŝ and its translation s̃h(x) = ŝh(x+ δ) the following

holds: the distribution of action paths z(x; ŝ) | θ under symmetric profile ŝ, conditional on

the realization of the fundamental θ equals distribution z(x; s̃) | (θ− δ) under s̃, conditional

on the fundamental being θ − δ. Thus, for any outcome function Ô, and its translation

Õ(θ) = Ô(θ + δ):

E
[

R
(

z(x; ŝ), Ô(θ)
)]

= E
[

R
(

z(x; s̃), Õ(θ)
)]

.

Letting s′ be the leftward translation of the optimal strategy s, s′h(x) = sh(x + δ), we

have

E
[

R
(

z(x; s), 1θ≥θ∗+δ

)]

= E
[

R
(

z(x; s′), 1θ≥θ∗
)]

≥ E
[

R
(

z(x; s), 1θ≥θ∗
)]

.

The last inequality holds because s is the best response to θ∗, and, under the definition (19),

payoff maximization is trivially equivalent to regret minimization. Comparing the left- and

right-hand sides gives (21).

A.3 Proofs for Section 5

Let us review the fast learning specification. Recall xi
t = xi

t+1 + σtηit, with xi
T+1 = θ. Each

error ηt has a continuous density ft with bounded support, and ft is bounded from above

and below by some positive f and f . We refer to εit =
xi
t
−θ

σt =
∑T

t′=t σ
t′−tηit′ as cumulative

error and denote its density by ασ
t ; it is bounded from above uniformly across all σ ∈ (0, 1]

and converges to ft as σ → 0. Similarly, for t′ < t, xt′−xt =
∑t−1

τ=t′ σ
τητ and thus there exists
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α such that the conditional density of xt′ |xt is bounded from above by α

σt′ , for all σ ∈ (0, 1].

The following lemma summarizes the heuristic derivation of the optimal strategy from

Section 5.

Lemma 3. If A1 holds then

1. there exists σ such that for all σ < σ, the best response to θ∗ is a threshold strategy,

2. limσ→0 F|h|+1

(

x∗
h
(σ)−θ∗

σ|h|+1

)

= p∗h, where p∗h ∈ (0, 1) solves the indifference condition (6).

The second statement implies that the threshold type x∗
h(σ) assigns probability p∗h to the

success, as σ → 0.

Proof of Lemma 3. Claim 1: Let πσ
h(xt) = E [V σ

h1(xt+1)− V σ
h0(xt+1)| xt] denote the incentive

to invest of the type xt at history h. We will establish single-crossing of πσ
h(xt) for each h

and sufficiently small σ.

Type xt forms beliefs at round t about her signal xt+1 in the next round. If xt+1 >

θ∗ +
∑T

t′=t+1 σ
t′/2 (respectively xt+1 < θ∗ −

∑T
t′=t+1 σ

t′/2), then the agent will be certain at

t+ 1 that the project will succeed (fail). The probability that the agent will be certain that

the project succeeds at t+ 1, given xt, is

Prσ

(

xt+1 > θ∗ +
T
∑

t′=t+1

σt′

2

∣

∣

∣

∣

xt

)

= Ft

(

xt − θ∗ −
∑T

t′=t+1
σt

′

2

σt

)

. (22)

Let xt = θmin −
∑T

t′=t
σt

′

2 and xt = θmax +
∑T

t′=t
σt

′

2 denote the endpoints of the support

of xt. For each t we distinguish three intervals of xt:17

[

xt, θ
∗ +

T
∑

t′=t+1

σt′

2
−

σt

2

]

,

[

θ∗ +
T
∑

t′=t+1

σt′

2
−

σt

2
, θ∗ −

T
∑

t′=t+1

σt′

2
+

σt

2

]

,

[

θ∗ −
T
∑

t′=t+1

σt′

2
+

σt

2
, xt

]

.

(23)

Consider xt from the third interval. The expression in (22) converges to 1, as σ → 0,

uniformly across all xt from the third interval. Therefore πσ
h(xt) converges to bh11...1 −

17The endpoints of the intervals are naturally ordered for σ < 1/2.
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ch11...1 − bh01...1 + ch01...1, which is positive by A1. Thus πσ
h(xt) > 0 on the third interval for

small enough σ. By a symmetric argument πσ
h(xt) < 0 on the first interval for small σ.

Next, consider xt from the middle interval:

πσ
h(xt) = Prσ

(

xt+1 < θ∗ −
∑T

t′=t+1
σt

′

2

∣

∣

∣

∣

xt

)

(−ch10...0 + ch00...0)

+

∫ θ∗+
∑

T

t′=t+1
σ
t
′

2

θ∗−
∑

T

t′=t+1
σt′

2

(

Vh1(xt+1)− Vh0(xt+1)
)

ft

(

xt − xt+1

σt

)

dxt+1

σt

+Prσ

(

xt+1 > θ∗ +
∑T

t′=t+1
σt

′

2

∣

∣

∣

∣

xt

)

(bh11...1 − ch11...1 − bh01...1 + ch01...1),

and letting

M(xt+1) =









Vh1(xt+1)− Vh0(xt+1)−















−ch10...0 + ch00...0 if xt+1 < θ∗,

bh11...1 − ch11...1 − bh01...1 + ch01...1 if xt+1 > θ∗,









we rewrite πσ
h(xt) as

πσ
h(xt) = Prσ (xt+1 < θ∗|xt) (−ch10...0 + ch00...0) +

∫ θ∗+
∑

T

t′=t+1
σ
t
′

2

θ∗−
∑

T

t′=t+1
σt′

2

M(xt+1)ft

(

xt − xt+1

σt

)

dxt+1

σt

+Prσ (xt+1 > θ∗|xt) (bh11...1 − ch11...1 − bh01...1 + ch01...1). (24)

The derivative with respect to xt of the sum of the first and the third terms is

[

(ch10...0 − ch00...0) + (bh11...1 − ch11...1 − bh01...1 + ch01...1)
]

ft

(

xt − θ∗

σt

)

1

σt
,

which is positive and of the order 1
σt because the term in the square brackets is positive by

A1 and ft
(

xt−θ∗

σt

)

is bounded from below by a constant f .
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The derivative of the second term is

∫ θ∗+
∑

T

t′=t+1
σ
t
′

2

θ∗−
∑

T

t′=t+1
σt′

2

M(xt+1)f
′
t

(

xt − xt+1

σt

)

dxt+1

σ2t
.

Term M(xt+1) is bounded as payoffs are bounded. The derivative f ′
t is bounded as well as

error densities are assumed to be continuously differentiable. The whole integral is of the

order σt+1 1
σ2t =

1
σt−1 . Thus, for sufficiently small σ, the sum of derivatives of the first, third

and the second term is positive; that is, d
dxt

πh(xt) is positive on the middle interval in (23).

For small σ, πσ
h(xt) is negative on the first interval, positive on the third interval, increas-

ing on the middle interval and continuous. Thus, the indifference condition πσ
h(xt) = 0 has

a unique solution x∗
h(σ).

Claim 2: Equation (24) implies that, as σ → 0, πσ
h(θ

∗ + σtε) converges, uniformly across

ε to
(

1− Ft(ε)
)

(−ch10...0 + ch00...0) + Ft(ε)(bh11...1 − ch11...1 − bh01...1 + ch01...1).

Hence Ft

(

x∗
h
(σ)−θ∗

σt

)

converges to the solution of the limit indifference condition (6).

Proof of Proposition 3. By Lemma 3, the best response to any θ∗ is a threshold strategy.

Thus, it suffices to prove that there exists σ such that for any θ∗ and all σ ≤ σ the best

response to θ∗ generates a non-decreasing expected success contribution dσ(θ).

Recall the convention xT+1 = θ, and let x∗
z = θ∗ for all z. Define auxiliary functions

dtσ(xt) = E
[

dz(x;s̃t)
∣

∣xt

]

, where the strategy s̃t coincides with the best response s to θ∗ up to

(including) round t− 1, and specifies action 0 in round t and thereafter; s̃th(x) = sh(x) when

|h| < t− 1 and s̃th(x) = 0 when |h| ≥ t− 1. Notice that dσ (xT+1) = dT+1
σ (xT+1).

We prove by induction over t that there exists σ such that for all σ ≤ σ, and all t =

1, . . . , T + 1:
d

dxt

dtσ(xt) ≥ 0 for all xt ≤ min
h:|h|=t−1

x∗
h. (25)

For t = T + 1 this is identical to the claim that d
dθ
d(θ) ≥ 0 for all θ ≤ θ∗. The proof of the
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monotonicity above θ∗ is symmetric, and we omit it.

Claim (25) holds for t = 1 because d1σ(x1) = d0...0. We show that if the claim holds

for t − 1 then it holds for t. Consider first xt ≤ minh:|h|=t−2 x∗
h −

σt−1

2 . Conditional on any

xt from this range, only signals xt−1 ≤ minh:|h|=t−2 x∗
h have positive probability density in

round t − 1. For such xt−1, sh(xt−1) = 0 for all h of length t − 2. Thus, for the considered

range of xt, dtσ(xt) = E [dt−1
σ (xt−1)|xt]. Translation invariance of the joint distribution of

signals, (2) implies that, for any function g, E [g (xt−1)| xt + δ] = E [g (xt−1 + δ)| xt], and so,

d
dxt

E [g(xt−1)|xt] = E
[

d
dxt−1

g(xt−1)
∣

∣

∣
xt

]

. Thus,

d

dxt

dtσ(xt) = E

[

d

dxt−1
dt−1
σ (xt−1)

∣

∣

∣

∣

xt

]

≥ 0

by the induction hypothesis.

To close the induction step, it remains to prove (25) for t and for

xt ∈

[

min
h:|h|=t−2

x∗
h −

σt−1

2
, min
h:|h|=t−1

x∗
h

]

.

For this range,

dtσ(xt) =
∑

h:|h|=t−2

(

∫ x∗
h
(σ)

−∞
dh00...0 Pr(Rh|xt−1)ft−1

(

xt−1 − xt

σt−1

)

dxt−1

σt−1
+

∫ +∞

x∗
h
(σ)

dh10...0 Pr(Rh|xt−1)ft−1

(

xt−1 − xt

σt−1

)

dxt−1

σt−1

)

.

Therefore

d

dxt

dtσ(xt) =
∑

h:|h|=t−2

(dh10...0 − dh00...0) Pr(Rh|x
∗
h)ft−1

(

x∗
h(σ)− xt

σt−1

)

1

σt−1
+

∑

h:|h|=t−2

∫

dhsh(xt)0...0ft−1

(

xt−1 − xt

σt−1

)

d

dxt−1
Pr(Rh|xt−1)

dxt−1

σt−1
.

We show that the first sum on the right-hand side is positive of order 1
σt−1 , and that the
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second sum is of order 1
σt−2 . Therefore,

d
dxt

dtσ(xt) ≥ 0 for small enough σ.

Let us discuss the first sum: dh10...0 − dh00...0 > 0 by A2. The second claim of Lemma

3 implies that Pr(Rh|x∗
h) > 0 for all histories h when σ is sufficiently small. Finally, for at

least one path h,
x∗
h
(σ)−xt

σt−1 is in the support of ηt−1 for the examined interval of xt, and thus

ft−1

(

x∗
h
(σ)−xt

σt−1

)

> f for at least one path h of length t− 2.

To prove that the second sum is of order 1
σt−2 we show that d

dxt−1
Pr(Rh|xt−1) is of order

1
σt−2 . We establish a bound on |Pr(Rh | xt−1 + δ)− Pr(Rh | xt−1)|. Let zt(x) be the first

t elements of z(x; s). Using this notation, Pr(Rh | xt−1) = Pr(zt−2(x) = h | xt−1), and

Pr(Rh | xt−1 + δ) = Pr(zt−2(x) = h | xt−1 + δ). Recalling that the distribution of x is

translation invariant, the last expression equals Pr (zt−2(x+ δe) = h | xt−1). Furthermore

∣

∣Pr
(

zt−2(x+ δe) = h | xt−1

)

− Pr
(

zt−2(x) = h | xt−1

)∣

∣

≤ Pr
( {

x : ∃τ < t− 1 such that sh(τ−1)(xτ + δ) %= sh(τ−1)(xτ )
}∣

∣ xt−1

)

≤
∑

τ<t−1

Pr
({

x : sh(τ−1)(xτ + δ) %= sh(τ−1)(xτ )
}∣

∣ xt−1

)

≤
∑

τ<t−1

δ
α

στ
,

where we used in the last step that, for τ < t − 1, the conditional density of xτ | xt−1 is

bounded by α
στ . The last expression is of order δ

σt−2 .

Proof of Proposition 4. By Lemma 1, θ∗(σ) = 1− d∗(σ) where

d∗(σ) =
∑

z′

dz′Prσ
(

z(x; s(σ)) = z′ |θ∗
)

,

and s(σ) is the best response to θ∗. Let Rh be the event that the agent reaches path h.

Prσ
(

z(x; s(σ)) = z′ |θ∗
)

=
T
∏

t=1

[

a(z′, t)Prσ
(

xt ≥ x∗
z′(t−1)(σ)

∣

∣ θ∗ and Rz′(t−1)(σ)
)

+(1− a(z′, t))Prσ
(

xt < x∗
z′(t−1)(σ)

∣

∣ θ∗ and Rz′(t−1)(σ)
)

]

.

To show that the last expression converges to lt, it suffices to prove that for each t and each
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path h of length t− 1:

lim
σ→0

Prσ
(

xt ≥ x∗
h(σ)| θ

∗ and Rh(σ)
)

= 1− p∗h.

We use

Prσ
(

xt ≥ x∗
h(σ)| θ

∗ and Rh(σ)
)

=

∫

Prσ
(

xt ≥ x∗
h(σ)| θ

∗ and xt−1

)

gh(xt−1)dxt−1,

where gh(xt−1) is the density of xt−1, conditional on Rh(σ) and θ∗. We rewrite this further

as
∫

Prσ
(

εt ≥ ε∗h(σ)| εt−1

)

g̃h(εt−1)dεt−1,

where g̃h(εt−1) = gh (θ∗ + σt−1εt−1) σt−1 is the density of εt−1 conditional on Rh(σ) and

θ∗, and ε∗h(σ) =
x∗
h
(σ)−θ∗

σt . The second statement in Lemma 3 implies that all histories are

reached with positive, non-vanishing probability in the critical state, as σ → 0. Thus g̃h(εt−1)

is bounded. We will show that Prσ
(

εt ≥ ε∗h(σ)| εt−1

)

converges to 1−p∗h, for each εt−1. Then

by the Dominated Convergence Theorem, the last integral converges to 1− p∗h.

Prσ
(

εt ≥ ε∗h(σ)| εt−1

)

=

∫∞
ε∗
h
(σ) ft−1 (εt−1 − σεt)ασ

t (εt)dεt
∫∞
−∞ ft−1 (εt−1 − σεt)ασ

t (εt)dεt
,

where ασ
t is the unconditional density of εt. Additionally, the second statement of Lemma 3

implies that limσ→0 ε∗h(σ) = η∗h, where Ft(η∗h) = p∗h. Since ft−1 and ασ
t are bounded, ft−1 is

continuous, and ασ(·) converges to ft(·):

lim
σ→0

Prσ
(

εt ≥ ε∗h(σ)| εt−1

)

= lim
σ→0

∫ ∞

ε∗
h
(σ)

αt(εt)dεt = 1− Ft (η
∗
h) = 1− p∗h.
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A.4 Proofs for Section 6

Let us extend the existing notation: z(h,x; s) denotes the terminal path that type x reaches if

she starts at path h and follows strategy s in the subsequent rounds. It is defined recursively

as z (h,x; s) = z
(

hsh
(

x|h|+1

)

,x; s
)

, and z (h′,x; s) = h′, if |h′| = T .

Proof of Proposition 5. The proof is divided into Lemmas 4 and 5. The first lemma estab-

lishes monotonicity of optimal strategies, and the second lemma proves monotonicity of the

outcome function.

Lemma 4. There exists τ such that for all τ < τ the best response to a threshold outcome

function is a threshold strategy.

Proof of Lemma 4. Recall that πh(xt; τ) = E [Vh1(xt+1; τ)− Vh0(xt+1; τ)| xt] denotes the in-

centive to invest. Notice that πh(x; τ) converges to πh(x; 0) as τ → 0, uniformly across x,

because |Vh(xt; 0)− Vh(xt; τ)| ≤ T τ . The function πh(x; 0) = Pr(θ ≥ θ∗|x)− c has a unique

root x∗
h(0), and πh(x; 0) is bounded away from 0 apart from any δ-neighborhood of x∗

h(0).

Thus for each δ > 0, equation πh(x; τ) = 0 has a solution and each solution x∗
h(τ) lies in

the δ-neighborhood of x∗
h(0), for sufficiently small τ . It remains to prove that the solution is

unique.

We prove below that ∂
∂x
πh(x; τ) converges to ∂

∂x
πh(x; 0) as τ → 0, uniformly across x.

Since ∂
∂x
πh(x; 0) is positive in a sufficiently small neighborhood of x∗

h(0), function πh(x; τ)

satisfies single-crossing, because ∂
∂x
πh(x; τ)|x=x∗(τ) > 0 for small enough τ . Therefore the

best response to θ∗ is a threshold strategy, as needed.

To prove that limτ→0
∂
∂x
πh(x; τ) =

∂
∂x
πh(x; 0) uniformly across x, we show that for h of

length t − 1, limτ→0
∂
∂xt

E[Vha(xt+1; τ)|xt] = ∂
∂xt

E[Vha(xt+1; 0)|xt], uniformly across xt, for

both a. For this, we use translation invariance of the joint distribution f(θ,x); (2). It

implies that, for any function g (xt+1), E [g (xt+1)|xt + δ] = E [g (xt+1 + δ)|xt], and thus
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∂
∂xt

E [g (xt+1)|xt] = E
[

∂
∂xt+1

g (xt+1)
∣

∣

∣
xt

]

. Using the last identity several times,

∂

∂xt

E [Vha(xt+1; τ)|xt] = E

[

∂

∂xt+1

Vha(xt+1; τ)

∣

∣

∣

∣

xt

]

= · · · = E

[

∂

∂xT

Vz(h,x;s(τ))(xT ; τ)

∣

∣

∣

∣

xt

]

,

and, similarly, ∂
∂xt

E [Vha(xt+1; 0)|xt] = E
[

∂
∂xT

Vz(h,x;s(0))(xT ; 0)
∣

∣

∣
xt

]

. Finally, ∂
∂xT

Vz(h,x;s(τ))(xT ; τ) =

fT
(

xT−θ∗

σ

)

1
σ
bz(h,x;s(τ)) and the previous paragraph established that the set of x on which

strategies s(τ) and s(0) differ, vanishes as τ → 0. Therefore E
[

∂
∂xT

Vz(h,x;s(τ))(xT ; τ)
∣

∣

∣
xt

]

converges to E
[

∂
∂xT

Vz(h,x;s(0))(xT ; 0)
∣

∣

∣
xt

]

, uniformly across xt.

Lemma 5. There exists τ > 0 and λ > 0 such that for all (τ,λ) ∈ [0, τ ] × [0,λ] the

best response s(τ) to a threshold outcome function O generates another threshold outcome

function O′.

Proof of Lemma 5. Fix a critical state θ∗ and consider function d(θ; τ,λ) = E
[

dz(x;s(τ))
∣

∣ θ
]

generated by the best response s(τ) to θ∗. We show that d
dθ
d(θ; τ,λ) > −1 for small enough

τ and λ, which establishes single-crossing for d(θ; τ,λ)− (1− θ) with respect to θ.

Let us write d(θ; τ,λ) as b(θ; τ) − λv(θ; τ) where b(θ; τ) =
∑

z′ bz′ Pr (z(x; s(τ)) = z′| θ)

and v(θ; τ) =
∑

z′ vz′ Pr (z(x; s(τ)) = z′| θ). Thus d
dθ
d(θ; τ,λ) = d

dθ
b(θ; τ) − λ d

dθ
v(θ; τ). The

first summand converges to d
dθ
b(θ; 0) as τ → 0 because, as shown in Lemma 4, thresholds

x∗
h(τ) → x∗

h(0). In the limit case, d
dθ
b(θ; 0) =

∑T
t=1

d
dθ
Pr (xt ≥ x∗

t | θ), which is non-negative.

Moreover, d
dθ
v(θ; τ) is bounded from above, so the right-hand side exceeds −1 for sufficiently

small τ and λ.

To finish the proof of Proposition 5, we verify that the outcome function O with threshold

θ∗ = 1 − d∗, and the best response s to O constitute a threshold equilibrium. Indeed, by

Lemma 4, s is a threshold strategy. By Lemma 5, s generates a threshold outcome function

O′. But O′ = O as needed because we chose θ∗ = 1− d∗.

Proof of Proposition 6. It suffices to analyze derivative d
dτ
v∗(τ). All the derivatives in the

proof are evaluated at τ = 0.
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We divide the proof into Lemmas 6 and 7. The first lemma states that the tax discourages

agents from exits and entries.

Lemma 6. For all histories h ending with action 0 or 1, d
dτ
x∗
h(τ) > 0 or d

dτ
x∗
h(τ) < 0,

respectively.

Proof of Lemma 6. We apply the Implicit Function Theorem on the indifference condition

πh (x∗(τ); τ) = 0:
∂πh (x; 0)

∂x

∣

∣

∣

∣

x=x∗
h
(0)

dx∗
h(τ)

dτ
+

∂πh (x∗
h(0); τ)

∂τ
= 0.

The derivative ∂
∂x
πh (x; 0)

∣

∣

x=x∗
h
(0)

= d
dx

Pr(θ ≥ θ∗|x)|x=x∗
h
(0) is positive and thus sign

(

dx∗
h
(τ)

dτ

)

=

− sign

(

∂πh(x∗
h
(0);τ)

∂τ

)

. We derive a simple characterization for the right-hand side:

∂πh (x∗
h(0); τ)

∂τ
= E

[

∂

∂τ
Vh1(xt+1; τ)−

∂

∂τ
Vh0(xt+1; τ)

∣

∣

∣

∣

x∗
h(0)

]

,

and ∂
∂τ
Vha(xt+1; τ) = −E

[

Pz(ha,x;s(0))|xt+1

]

where Pz =
∑T

t′=2 1a(z,t′)=r(z(t′−1)) denotes the

number of punished actions on the path z. Thus

∂πh (x∗
h(0); τ)

∂τ
= E

[

Pz(h0,x;s(0)) − Pz(h1,x;s(0))

∣

∣ x∗
h(0)

]

.

This further simplifies because the best response is history-independent for τ = 0; sh(x) =

sh′(x) when |h| = |h′|. Therefore the expected number of punished actions at rounds t +

2, . . . , T is equal across z(h1,x; s(0)) and z(h0,x; s(0)). Thus

∂πh (x∗
h(0); τ)

∂τ
=















1 if a (h, |h|) = 1,

−1 if a(h, |h|) = 0,

as needed.

Next lemma characterizes how the change in the strategy affects critical volatility.
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Lemma 7. For all histories h ending with action 0 or 1, ∂
∂x∗

h

v∗ ≤ 0 or ∂
∂x∗

h

v∗ ≥ 0, respectively.

The inequality is strict for those h for which the inequality (8) is strict.

Proof of Lemma 7. Recall that Rh is the event that an agent reaches path h. We can write

critical volatility v∗ for τ = 0 as

∑

h:|h|=t−1

Pr(Rh|θ
∗)

(

∫ x∗
h

−∞
E
[

vz(h0,x;s(0))
∣

∣ xt and θ∗
]

gh(xt)dxt +

∫ ∞

x∗
h

E
[

vz(h1,x;s(0))
∣

∣ xt and θ∗
]

gh(xt)dxt

)

,

where gh(xt) is density of xt conditional on θ∗ and on Rh. Therefore

∂

∂x∗
h

v∗ = Pr(Rh|θ
∗)gh(x

∗
h) E

[

vz(h0,x;s(0)) − vz(h1,x;s(0))
∣

∣ x∗
h and θ∗

]

.

We only need to analyze the sign of E
[

vz(h0,x;s(0)) − vz(h1,x;s(0))
∣

∣ x∗
h and θ∗

]

as Pr(Rh|θ∗)gh(x∗
h)

is positive. When τ = 0, the distribution of the continuation histories h′ is independent of

the action played at round t:

Pr (z(h0,x; s(0)) = h0h′ | x∗
h and θ∗) = Pr (z(h1,x; s(0)) = h1h′ | x∗

h and θ∗) ,

for all h′ ∈ {0, 1}T−|h|−1 because s(0) is history-independent.

Consider h ending with action 0.18 By A3, vh0h′ ≤ vh1h′ for all h′, and thus

E
[

vz(h0,x;s(0)) − vz(h1,x;s(0))
∣

∣ x∗
h and θ∗

]

≤ 0, (26)

for any conditional distribution of the continuation histories h′. If the strict inequality holds,

vh0h′ < vh1h′ for some h′ then (26) applies with strict inequality.

Combining the two lemmas, the effect of taxes on the critical volatility is

dv∗

dτ
=
∑

h

∂v∗

∂x∗
h

d

dτ
x∗
h(τ) ≤ 0,

18We omit the essentially identical case of histories ending with 1.
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as the summands are non-positive. If (8) is strict for some h then the summand of h is

negative.

A.5 Proofs for Section 7

Proof of Proposition 8. Critical volatility v∗ = v∅/T where v∅ is defined recursively as:19

v∅ = p∗∅v0 + (1− p∗∅)v1,

vh = p∗h (a(h, |h|) + vh0) + (1− p∗h) (1− a(h, |h|) + vh1) , when |h| = 1 . . . T − 2,

vh = p∗ha(h, |h|) + (1− p∗h) (1− a(h, |h|)) , when |h| = T − 1,

where probabilities p∗h are given by the indifference condition (6): p∗∅ =
c+τ
1+2τ . For all histories

of length 1, . . . , T − 2, p∗h = c+2τ
1+2τ if h ends with 0, and p∗h = c

1+2τ for all h ending with 1.

Finally, for all histories of length T − 1, p∗h = c+ τ if h ends with 0, and p∗h = c− τ for all h

ending with 1.

Proposition 4 implies that θ∗ = 1− b∗+λv∅/T . The critical investment b∗ is independent

of τ by the invariance result, and thus it suffices to prove that dv∅
dτ

∣

∣

∣

τ=0
< 0. We will prove

this by induction over the length of the history h.

First, we let the reader verify that dvh
dτ

∣

∣

τ=0
< 0 when |h| = T − 1. Next, consider h of

length 1 . . . T − 2, and assume dvh′
dτ

∣

∣

∣

τ=0
< 0 for histories h′ of length |h|+ 1.

dvh
dτ

∣

∣

∣

∣

τ=0

= [2a(h, |h|)− 1]
dp∗h
dτ

∣

∣

∣

∣

τ=0

+ p∗h
dvh0
dτ

∣

∣

∣

∣

τ=0

+ (1− p∗h)
dvh1
dτ

∣

∣

∣

∣

τ=0

+
dp∗h
dτ

∣

∣

∣

∣

τ=0

(vh0 − vh1) .

Using the expressions for p∗h, it is straightforward to verify that the first summand is negative.

The second and the third summands are negative by the induction hypothesis. The fourth

summand is zero as vh0 = vh1 when τ = 0. The last statement holds because the optimal

strategy is history-independent when τ = 0.

19Variable vh is the expected number of switches on the continuation path, conditional on agent reaching
action history h, and on the state being critical.
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Finally,

dv∅
dτ

∣

∣

∣

∣

τ=0

= p∗∅
dv0
dτ

∣

∣

∣

∣

τ=0

+ (1− p∗∅)
dv1
dτ

∣

∣

∣

∣

τ=0

+
dp∗∅
dτ

∣

∣

∣

∣

τ=0

(v0 − v1) .

The first two summands are negative, as we have established that dvh
dτ

∣

∣

τ=0
< 0 for h ∈ {0, 1},

and the last summand is again zero when τ = 0.

Proof of Lemma 2. Let (a1, . . . , aK ; p1, . . . , pK) be a lottery in which outcomes ak have a

probabilities pk. Recall that lottery L′ is a mean-preserving spread of L if there exist lotteries

Z1, . . . , ZK , each with mean ak, such that L′ can be identified with the compound lottery

(Z1, . . . , ZK ; p1, . . . , pK). We write L′ # L if L′ is a mean preserving spread of L.

We say that a set of real numbers {b1, . . . , bK} is a spread of {a1, a2} if for each k ∈

{1, . . . , K}, bk ≤ a1 or bk ≥ a2, the inequality is strict for some k, and mink bk ≤ a1 < a2 ≤

maxk bk. We omit the proof of the following lemma:

Lemma 8. 1. If {b1, . . . , bK} is a spread of {a1, a2}, lotteries L and L′ have equal means,

and supports {a1, a2} and {b1, . . . , bK}, respectively, then L′ # L.

2. Suppose L′
k # Lk for all k = 1, . . . , K. Let L = (L1, . . . , LK ; p1, . . . , pK) and L′ =

(L′
1, . . . , L

′
K ; p1, . . . , pK) be compound lotteries. Then L′ # L.

Fix τ and omit it from the notation for now. Recall that

lh =
|h|
∏

t′=1

[

a(h, t′)
(

1− p∗h(t′)
)

+
(

1− a(h, t′)
)

p∗h(t′)
]

is the probability of reaching path h in the critical state, and let LT be lottery
(

(bz)z; (lz)z
)

.

Define the success premium at path h as

Sh = max
z:∃h′ s.t. z=hh′

u(z, 1)− max
z:∃h′ s.t. z=hh′

u(z, 0).

Note that Sz = bz for each terminal path z, and S∅ = S. Define a sequence of lotteries Lt =
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(

(Sh)h:|h|=t, (lh)h:|h|=t

)

for t = 0, . . . , T . The definition of LT coincides with the definition

from the previous paragraph.

We can rewrite the indifference condition (6) as

Sh = (1− p∗h)Sh1 + p∗hSh0,

where 1−p∗h is the probability that agent chooses action 1 at path h, conditional on the state

being θ∗. Thus, for each t = 1, . . . , T , the lottery Lt can be identified with the compound

lottery
(

(Qh)h:|h|=t−1; (lh)h:|h|=t−1

)

,

where Qh = (Sh0, Sh1; p∗h, 1− p∗h) has mean Sh.

We will prove by induction over t that LT (τ ′) " LT (τ) for each τ, τ ′ ∈ [0, 1− c), τ ′ > τ .

Notice that L1(τ ′) " L1(τ) because both lotteries have identical means equal to S∅ = S,

and support of L1(τ̃ ) is {S0(τ̃), S1(τ̃ )} =
{

(1−c)(T−1)−τ̃

T
, (1−c)(T−1)+1+τ̃

T

}

, for τ̃ ∈ {τ, τ ′}. Thus

{S0(τ ′), S1(τ ′)} is a spread of {S0(τ), S1(τ)}.

From now on, we write variables associated with tax τ ′ with an apostrophe and variables

associated with τ without an apostrophe. For instance, we use L′
t = Lt(τ ′) and Lt = Lt(τ).

Assume for induction L′
t−1 " Lt−1, so that for each h of length t−1 there exists a lottery Zh

with support
{

S ′
g

}

g:|g|=t−1
and probabilities (zhg )g:|g|=t−1, with mean E[Zh] = Sh, such that

L′
t−1 can be identified with the compound lottery

(

(Zh)h:|h|=t−1; (lh)h:|h|=t−1

)

.

Define a compound lottery Q̂h =
(

(

Q′
g

)

g:|g|=t−1
; (zhg )g:|g|=t−1

)

. It is constructed from Zh

by replacing each outcome S ′
g by binary lottery Q′

g =
(

S ′
g0, S

′
g1; p

′∗
g , 1 − p′∗g

)

with mean S ′
g.

By construction, the mean of Q̂h is Sh.

Lotteries L′
t and Lt can be identified with the compound lotteries

(

(

Q̂h

)

h:|h|=t−1
; (lh)h:|h|=t−1

)

, and
(

(Qh)h:|h|=t−1 ; (lh)h:|h|=t−1

)

,
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respectively.

Using the second statement of Lemma 8, L′
t ! Lt if Q̂h ! Qh for each path h of length

t − 1. For each h, the means of both Q̂h and Qh equal Sh and thus, by the first statement

of Lemma 8, it suffices to show that the support of Q̂h is a spread of the support of Qh.

Support of Q̂h is
{

S ′
g

}

g:|g|=t
, whereas support of Qh is {Sh0, Sh1}. Let bg = 1

T

∑|g|
t′=1 a(g, t

′)

be the investment to which the agent has committed at path g. For each path g of length

t < T

Sg(τ) =
(T − t)(1− c)

T
+ bg















+τ/T if h ends with action 1,

−τ/T if h ends with action 0,

and for g of length T , Sg(τ) = bg. Fix any path h of length t−1. Then for any τ, τ ′ ∈ [0, 1−c),

τ < τ ′, the following holds: Sg(τ ′) ≤ Sh0(τ) or Sg(τ ′) ≥ Sh1(τ) for all g of length t, the

inequality is strict for at least some g, and ming Sg(τ ′) ≤ Sh0(τ) < Sh1(τ) ≤ maxg Sg(τ ′).

Proof of Proposition 10. Recall that in the critical state θ∗, and in the limit σ → 0, the

agent invests at path h with probability 1 − p∗h where p∗h is the solution of the indifference

condition (6). For all histories of length t < T − 1, p∗h = c+2τ
1+2τ if h ends with action 0, and

p∗h = c
1+2τ for all h ending with action 1. Since the probability of playing an action at path

h only depends on the last action of h, the sequence at constitutes in the critical state a

Markov chain with transition matrix

Q (at−1, at) =







c+2τ
1+2τ 1− c+2τ

1+2τ

c
1+2τ 1− c

1+2τ






,

and with a0 = 0.

The investment bz = 1
T

∑T
t=1 az(t) is the average action at in the first T rounds of a

realization z of the Markov chain. For large T , we can apply the Central Limit Theorem for

Markov chains (see Kemeny and Snell (1960)) and approximate the distribution of bz|θ∗ by

the normal distribution N
(

b̃, ω
2

T

)

. The parameter b̃ is the mean of the chain’s steady state
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distribution π that solves π.Q = π. Thus (π0, π1) = (c, 1− c), and b̃ = 1− c. We report that

the variance parameter is ω2 = (1 − c)c(1 + 4τ), and omit the calculation. For any twice

differentiable ϕ,

E [ϕ(bz)|θ
∗] = ϕ(1− c) +

ϕ′′(1− c)ω2

2T
+ o

(

1

T 2

)

→ ϕ(1− c),

where o
(

1
T 2

)

is an expression of order of 1
T 2 .

When T is large, we can approximate critical volatility v∗T applying the stationary distri-

bution π of the ergodic Markov chain: v∗T converges to v∗ = π0Q(0, 1) + π1Q(1, 0) = 2(1−c)c
1+2τ .

Thus, altogether, θ∗(T ) → 1− ϕ(1− c) + λ2(1−c)c
1+2τ , as T → ∞.

A.6 Proof for Subsection 8.1

Proof of Proposition 11. Let s∗ = s(u, 1) be the best response to θ∗ under the uniform prior

u and the scaling parameter σ = 1. We will prove that (rescaled) best response under a prior

φ converges to s∗:

lim
σ→0

sh
(

θ∗ + σε|h|+1;φ, σ
)

= s∗h
(

θ∗ + ε|h|+1

)

, (27)

for all histories h and any error ε|h|+1.

The convergence of the strategies implies that, for each realization of errors, agent’s

actions in the critical state under prior φ converge to the actions under the uniform prior:

denote by ε the vector (ε1, . . . , εT ), and use e for the unit vector. Recall that z(x; s) is the

terminal history reached by type x under strategy s. The convergence of the strategy, (27),

implies that

lim
σ→0

z
(

θ∗e+ σε; s(φ, σ)
)

= z
(

θ∗e+ ε; s∗
)

.

Thus, denoting the joint errors’ density by f(ε),

lim
σ→0

b∗(φ, σ) = lim
σ→0

∫

b
z
(

θ∗e+σε;s(φ,σ)
)f(ε)dε =

∫

bz(θ∗e+ε;s∗)f(ε)dε.
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The last expression is the critical investment under the uniform prior, which equals the

success premium S by Theorem 1 in the main text.

To prove (27), we will examine the belief of type xt in round t about her next round

signal xt+1. Let f̃t (xt+1, xt;φ, σ) denote the conditional density of xt+1, given xt, under the

prior φ(θ), and the scaling parameter σ. We will use that for all t = 1, . . . , T

lim
σ→0

f̃t (θ
∗ + σεt+1, θ

∗ + σεt;φ, σ) = ft(εt − εt+1), (28)

recalling that ft is the density of the instantaneous error ηt = εt − εt+1. Let us prove (28)

for t = 1, . . . , T − 1. The case for t = T is similar, only simpler. Let αt be the density of εt.

f̃t (θ
∗ + σεt+1, θ

∗ + σεt;φ, σ) =

∫

φ(θ∗ + σεt+1 − σε̃t+1)αt+1(ε̃t+1)ft(εt − εt+1)dε̃t+1
∫∫

φ(θ∗ + σεt − σηt − σε̃t+1)αt+1(ε̃t+1)ft(ηt)dηtdε̃t+1
.

The integrands are bounded, the prior φ is continuous and positive so, as σ → 0, the right-

hand side converges to

∫

φ(θ∗)αt+1(ε̃t+1)ft(εt − εt+1)dε̃t+1
∫∫

φ(θ∗)αt+1(ε̃t+1)ft(ηt)dηtdε̃t+1
= ft(εt − εt+1).

We now prove (27) by induction. Let V ∗
h (x) = Vh(x; u, 1) be the value function under

the uniform prior u and scaling parameter σ = 1. Form an induction hypothesis that for all

histories h of length t,

lim
σ→0

Vh (θ
∗ + σεt+1;φ, σ) = V ∗

h (θ∗ + εt+1) ,

and notice that the hypothesis is trivially satisfied for all the terminal histories, because

O (θ∗ + σε) = O (θ∗ + ε).

The induction hypothesis implies that for all histories h of length t− 1,

lim
σ→0

Vh (θ
∗ + σεt;φ, σ) = V ∗

h (θ∗ + εt) ,
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and

lim
σ→0

sh (θ
∗ + σεt;φ, σ) = s∗h (θ

∗ + εt) .

The first limit holds because:

Vh (θ
∗ + σεt;φ, σ) = max

a

∫

Vha (θ
∗ + σεt+1;φ, σ) f̃t (θ

∗ + σεt+1, θ
∗ + σεt;φ, σ) dεt+1,

which by the induction hypothesis and by (28) converges to

max
a

∫

V ∗
ha (θ

∗ + εt+1) ft(εt − εt+1)dεt+1 = V ∗
h (θ

∗ + εt).

The argument for the second limit is identical.
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