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Abstract 

Empirical models of strategic games are central to much analysis in marketing and economics. 
However, two challenges in applying these models to real world data are that such models often 
admit multiple equilibria and that they require strong informational assumptions. The first 
implies that the model does not make unique predictions about the data, and the second implies 
that results may be driven by strong a priori assumptions about the informational setup.  This 
article summarizes recent work that seeks to address both issues and suggests some avenues for 
future research. 
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1. Introduction 

Structural estimation of strategic games has allowed researchers to address a wide variety of 
important questions about competitive conduct in concentrated markets.  The early literature—
spawned by Bresnahan & Reiss (1991)—restricted attention to static discrete games, i.e., one-
shot games in which each firm faces a finite set of possible actions.  This framework has been 
used to study entry, pricing formats, product lines, product quality, and store format and location 
in oligopolistic settings.  Ericson & Pakes (1995) introduced an estimable model of dynamic 
competition that built upon the static discrete games literature in two ways.  First, it incorporated 
forward-looking firms that interact repeatedly, allowing researchers to examine richer industry 
behavior.  Second, it allowed firms to make not only discrete but also continuous choices.  
Resulting models consider dynamic pricing, R&D investment, and advertising outlays, amongst 
other topics. 

Despite tremendous progress over the past decade, these related literatures continue to face 
similar challenges.  First, the possibility of multiple equilibria poses challenges for estimation 
and counterfactual analysis within the context of both static and dynamic games.  Second, both 
frameworks have thus far been forced to make strong informational assumptions.  In this paper, 
we review these challenges and the recent progress made in addressing them, and discuss 
directions for future research. 

Multiplicity of equilibria poses challenges for estimation of both static and dynamic games 
because it gives rise to a coherency problem.  In the presence of multiplicity, a model does not 
yield unique predictions.  This makes it impossible to write down probability statements for the 
basic outcomes of the model and, accordingly, a likelihood function to use in estimation.  We 
discuss the main approaches that have been used to address the coherency problem in estimating 
static discrete games. Multiplicity poses far greater challenges to estimation of dynamic 
stochastic games because simply finding multiple equilibria can be extremely difficult. We 
discuss an approach for systematically searching for multiple equilibria in dynamic stochastic 
games and explain how this approach might help scholars address the problems that multiplicity 
poses for both estimation and counterfactual analysis. 

In the literature on empirical games, strong informational assumptions have typically been 
required in order to ensure tractability. We discuss three of the most prominent assumptions and 
explain how recent methodological contributions can help relax them.  First, the standard 
approach  in  the  literature  on  static  discrete  games  entails  assuming  that  firms’  payoffs  are  either  
publicly observable (complete information) or privately observable by individual firms 
(incomplete information).  However, it stands to reason that in many markets there are both 
public and private components to a firm’s payoff function.  We discuss some recent research that 
demonstrates how these different frameworks can lead to qualitatively different conclusions for 
the same empirical application.  This motivates a model with a flexible information structure that 
includes both public and private components and allows one to estimate the extent to which 
firms’  payoffs  are  publicly  known.     Second,   in  games of incomplete information, one typically 
assumes  that  a  player’s  beliefs  about  the  behavior  of  other  players  are   in equilibrium, i.e., they 
are consistent with the information available to the player and its   rivals’   equilibrium strategy 
profiles.  However,  in  reality  firms  often  face  significant  uncertainty  about  their  rivals’  strategies.    
In fact, firms are often deliberately secretive about their strategies and may even try to conceal 
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them.  We discuss some recent research that allows for biased beliefs  about  rivals’  strategies  and  
shows that robust inference is possible in this context.  Third, empirical dynamic games have 
typically  made  a   symmetric   information  assumption,   i.e.,   firms’  perfectly  observe  each  others’  
payoff relevant states (e.g., product quality, capacity, knowledge stock) and their actions.  
However, the IO theory literature makes a convincing case for the role of asymmetric 
information in games, suggesting that these should also be explored empirically.  We discuss two 
recent approaches to incorporating persistent asymmetric information into empirical dynamic 
games. 

Finally, we discuss possible directions for future research related to both multiplicity of 
equilibria and information structures—highlighting the role that firm learning can play in 
facilitating progress in both areas.  The theoretical literature on learning in games (Fudenberg 
and Levine, 1998) is motivated by the notion that firms may engage in an adaptive process 
through  which  they  “learn”  how  to  play  an  equilibrium.    Formally incorporating firm learning of 
this sort into IO models could help address the challenges posed by multiplicity by providing an 
equilibrium selection mechanism.  This might be a particularly attractive solution to the 
coherency problem because the selection mechanism would be rooted in assumptions regarding 
firm behavior.  Incorporating learning into games would also allow for models with much richer 
information assumptions that might exploit data to reveal how the information environment 
evolves endogenously over time. 

The remainder of the paper is organized as follows.  In section 2, we discuss the challenges 
posed by multiplicity of equilibria and some recent progress.  In section 3, we discuss some 
frontier research on information structures that allows one to relax the strong assumptions 
traditionally made in the literature. Section 4 discusses directions for future research. 

2. Multiplicity 

In this section, we examine why multiplicity poses a challenge for estimation and inference in 
economic models of games. The fundamental issue is that, in the presence of multiplicity, a 
model predicts multiple possible outcomes for a given input without providing any guidance on 
their relative likelihood.  In such a situation, it is impossible to derive probability statements for 
the basic outcomes of the model (i.e., P(Y|X, θ) may not be defined).  Without these probability 
statements, an econometrician cannot write down a likelihood function to use in estimation. In 
more complex models, even computing the set of equilibrium outcomes over which to compute 
the likelihood poses a challenge. 

2.1 Inference 

Several strategies can be used to conduct inference in the presence of multiplicity. Here we 
provide only a brief overview to motivate our later discussion. The interested reader is referred to 
Ellickson and Misra (2011) for additional details.  

First, as originally proposed by Bresnahan and Reiss (1991), one can aggregate non-unique 
predictions into sets of outcomes about which probability statements can be defined. For 
example, in an entry game, if a small market can accommodate but one of two potential entrants, 
but the model is not detailed enough to predict the entrant’s  identity, one can build a likelihood 
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around predicting the number of firms that serve market, rather than the identities of the firms 
that choose to enter. While aggregation relies on the particulars of the model under 
consideration, it has been used with success in several empirical applications. Of course, 
aggregating events does result in some loss of information, as shown in Tamer (2003). 

A second approach, first proposed by Ciliberto and Tamer (2009), is to use bounds on 
probability statements to infer the model parameters, thus making greater use of the information 
in the data. A notable feature of this approach is that inference is valid whether or not the model 
itself is point identified. A final approach is to complete the model by directly imposing an 
equilibrium selection mechanism. The simplest example would be to assume that a unique 
outcome is chosen based on a selection rule that is independent of all observable and 
unobservable constructs. This is the approach taken by Sweeting (2009). Bajari, Hong, and Ryan 
(2010) extend this approach to allow the selection criterion to depend parametrically on 
observable characteristics and the equilibrium  “type”  (e.g., maximizing joint payoffs, employing 
mixed strategies, etc.).  Grieco (2013) extends the selection mechanism even further to allow it to 
be a non-parametric function of model observables and unobservables.  

2.2 Computation 

While solving for multiple equilibria of static discrete games is often straightforward, doing so 
for dynamic games (Ericson & Pakes 1995) is challenging. In this section, we discuss the 
homotopy method, a systematic approach to searching for multiple equilibria in such dynamic 
games.† 

Ericson and Pakes (1995) provide a canonical model of dynamic competition in an oligopolistic 
industry with investment, entry, and exit. Their framework facilitates empirical and numerical 
analysis of a wide variety of phenomena that are too complex to be explored in analytically 
tractable models. Methods for computing equilibria are therefore a key part of this research 
stream. Although equilibrium existence—in particular, pure-strategy Markov-perfect 
equilibria—is guaranteed (Doraszelski and Satterthwaite 2010), the potential for multiplicity is 
widely recognized. 

To date, the Pakes and McGuire (1994) algorithm is most often used to compute equilibria of 
these dynamic games.  To identify multiple equilibria (for a given parameterization of the 
model), the algorithm must be restarted from different initial guesses.  However, different initial 
guesses do not necessarily lead to different equilibria and this trial-and-error approach is sure to 
miss a substantial fraction of them (Besanko, Doraszelski, Kryukov and Satterthwaite 2010).  It 
is important, therefore, to consider alternative algorithms that can identify multiple equilibria. 

The homotopy method achieves this by tracing out an entire path in the equilibrium 
correspondence by varying one or more selected parameters of the model. If this path bends back 
on itself, then the homotopy method has identified multiple equilibria.‡ The homotopy method is 
guaranteed to find all equilibria on a path it traverses and, therefore, to find all multiple equilibria 
that arise in this manner. However, since multiple equilibria for a given parameterization do not 
necessarily lie on the same path, the homotopy method is not guaranteed to find all equilibria. 
                                                 
† See Doraszelski and Pakes (2007) for a broad review. 
‡ See Figure 1 in Besanko et al. (2010) and Figure 1 in Borkovsky et al. (2012) for examples.   
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In the first paper to apply the homotopy method to dynamic stochastic games, Besanko et al. 
(2010) explore how learning-by-doing   and   organizational   forgetting   affect   firms’   pricing  
strategies and the evolution of industry structure.  They find that multiple equilibria give rise to 
qualitatively different behaviors and short- and long-run industry structures.  Several papers have 
since employed the homotopy method and all have found multiplicity.§ 

3. Information Structures 

In this section, we discuss recent contributions that make it possible to relax three strong and 
pervasive informational assumptions made in the empirical games literature. First, we discuss 
relaxing the assumption of either complete or incomplete information in static discrete games by 
incorporating public  and  private  components   into  firms’  payoff   functions.     Second,  we  explore 
relaxing the  assumption  that  players’  beliefs  are  in equilibrium, allowing for the possibility that 
players’ beliefs about rivals’  behavior may be biased.  Third, we discuss two recent approaches 
to relaxing the symmetric information assumption typically made in empirical dynamic games.  
These contributions could produce new and exciting branches of the literature on empirical 
games for two reasons.  First, by relaxing these assumptions, researchers can devise more 
flexible models that impose fewer restrictions on how data are interpreted.  Second, these 
contributions allow scholars to empirically explore a variety of applied problems that were 
previously out of reach; section 3.3 provides but one example.  

3.1 Flexible Information Structures 

Informational assumptions about the game being played can have a substantial impact on what 
can be inferred from data.  For example, models of strategic interaction often presume either an 
incomplete or complete information framework.  Under complete information, all players 
perfectly observe the payoff functions of their opponents, so the only potential source of 
uncertainty over rival actions arises via mixed strategies.  Under incomplete information, each 
player  knows  her  own  “type”.    This  means  she  must make her decision in the face of uncertainty 
about her opponent.** 

Grieco (2013) has shown that different informational assumptions can lead researchers to draw 
different conclusions from the same data.  He advocates the use of a flexible structure that allows 
for both complete and incomplete information components. While the flexible structure may not 
be point identified, partial identification inference procedures can produce confidence intervals 
that are economically meaningful and robust to different combinations of complete and 
incomplete information.  The key advantage of this approach is that results will not be driven by 
an a priori assumption about the informational setup. 

3.2 Biased Beliefs 

                                                 
§ See Besanko, Doraszelski, Lu & Satterthwaite (2010a, 2010b), Borkovsky, Doraszelski and Kryukov (2010, 2012) 
and Besanko, Doraszelski & Kryukov (2013). 
** See Narayanan (2013) and Misra (2013) for Bayesian approaches to estimate complete or incomplete information 
games, respectively, that mix over equilibrium. 
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Aguirregabiria and Magesan (2012) study identification of dynamic games when players' beliefs 
about rivals’ actions may be biased. In empirical games with players unbiased or equilibrium 
beliefs, a standard assumption to obtain identification of payoff functions consists of the 
following exclusion restriction: each player has an observable state variable that enters in his 
payoff function but it does not have a direct effect in the payoff of the other players (see Bajari, 
Hong, Krainer, and Nekipelov, 2010, among others). Dynamic games of oligopoly competition 
provide multiple examples of this type of exclusion restriction. For instance, in a standard model 
of market entry-exit, the incumbent status of a firm in the market affects the firm’s   profit  by 
determining whether it must pay an entry cost to be active in the market, but it does not have any 
direct effect on the profits of the other firms. The profits of the other firms are only affected 
indirectly  through  this  firm’s  current  choice  to  be  active  in  the  market. 

Aguirregabiria and Magesan show that this exclusion restriction can be used to detect biases in 
players’  beliefs  about  other  players’  behavior,  and  to  test  the  null  hypothesis  of  unbiased  beliefs.  
To describe the main idea of this test, consider a two-player game where each player 𝑖 ∈ {1,2} 
chooses a binary action 𝑌 ∈ {0,1} to maximize his expected payoff. Let 𝑆ଵ be  the  “special”  state  
variable   that  we  assume  enters   in   the  payoff  of  player  1  but  not   in  player  2’s  payoff   function.  
Under this condition, the choice probability of player 2 (i.e., the probability of 𝑌ଶ = 1 
conditional on common knowledge state variables) depends on the state variable 𝑆ଵ only because 
player 2 believes that this state variable affects the behavior of player 1. The dependence of the 
choice probability of player 2 with respect to 𝑆ଵ reveals   information   about   player   2’s   beliefs.  
Aguirregabiria  and  Magesan  show   that   this   information   identifies  nonparametrically  a  player’s  
beliefs as a function of the special state variable, up to an intercept and a scale constant. Using 
this identification result, they construct a test for the null hypothesis of unbiased beliefs. 

3.3 Asymmetric Information 

Empirical dynamic games have typically made a symmetric information assumption because it 
yields tremendous benefits in terms of both analytical and numerical tractability.  However in the 
IO theory literature, important phenomena such as limit pricing and predation have been 
modeled as two period asymmetric information models.  For example, Milgrom and Roberts 
(1982) show how an efficient incumbent monopolist may set a low price to deter an uninformed 
potential entrant from entering.  Extending these models to more realistic dynamic settings with 
repeated interactions is complicated by the nature of the Perfect Bayesian Nash Equilibrium 
(PBNE)  concept,  which  requires  the  specification  of  each  player’s  beliefs  about  the  unobserved  
state variables given the entire history of the game. This is likely to be computationally 
intractable. Moreover, the ability to construct many different possible beliefs may lead to a 
severe multiplicity of equilibria, complicating both estimation and the analysis of 
counterfactuals. 

Two recent papers have taken different approaches to these problems.  Fershtman and Pakes 
(2012) propose replacing the PBNE concept with an alternative, Experience Based Equilibrium 
(EBE), where only players’   beliefs   about   their   expected   payoffs   from   different actions are 
specified  rather  than  their  beliefs  about  other  players’  types.  Under  additional  assumptions  about  
the maximum number of past periods on which beliefs can be conditioned, this simplifies the 
computational problem substantially.  However, it may make the multiplicity problem worse, as 
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all PBNEs should have associated EBEs that generate similar equilibrium actions and there may 
be additional EBEs, too. 

Gedge, Roberts and Sweeting (2013) take an alternative approach.  They devise a dynamic 
version of Milgrom and Roberts (1982) limit pricing model with persistent asymmetric 
information and maintain the PBNE concept. They address the aforementioned challenges by 
identifying a set of assumptions on model primitives under which a combination of PBNE and 
standard refinements applied recursively yield a unique equilibrium.  In this equilibrium, a 
player’s  action perfectly reveals his current type, so that equilibrium beliefs have a particularly 
simple form, i.e., they depend only on  the  player’s  last  action.    In  this  way  both  of  the  problems  
identified above are circumvented.   They also show that the equilibrium model can explain some 
pricing patterns from the airline industry, in particular, the substantial decreases in price that 
occur when Southwest Airlines becomes a potential entrant, but not an actual entrant, on a route. 

4. Suggestions for Future Research  

In this section, we discuss possible directions for future research related to both multiplicity of 
equilibria and information structures—highlighting the role that firm learning can play in 
facilitating progress in both areas. 

Multiplicity.  Multiplicity poses particularly serious problems for empirical dynamic games. 
First, as explained above, if one cannot rule out multiplicity, then one cannot write down a 
likelihood function.  To address this problem, most estimation methods used thus far have 
assumed that the same equilibrium is played in all geographic markets and/or time periods. 
While this assumption is trivially satisfied if the equilibrium is unique, it is potentially restrictive 
in the presence of multiplicity.  The homotopy method could potentially help relax this 
assumption.  If one were to devise an estimation method that accounted for the possibility that 
multiple equilibria are played in the data, then one would require a method for systematically 
searching for multiple equilibria.  One could then use the homotopy method to precompute 
equilibria in the first stage of such an estimation method.†† 

Second, it is difficult to draw conclusions from policy experiments if there are multiple 
equilibria, as one cannot determine which one arises after a change in policy.  By systematically 
searching for multiple equilibria using the homotopy method, one could thoroughly characterize 
the set of counterfactual equilibria and, in doing so, bound the set of possible outcomes that 
might arise.‡‡  Echenique and Komunjer (2009) take an alternative approach within the context 
of models with strategic complementarities. Because such models satisfy a monotone 
comparative statics condition, they are able to derive testable implications for how a change in 
parameterization   affects   the   “smallest”   and   “largest”   equilibria   that   a  model   admits.  Applying  
this approach to the Berry, Levinsohn and Pakes (1999) analysis of voluntary export restraints 
(VER), they show that the presence of VER results in an increase in prices when both the 
smallest and largest equilibria are played. 

                                                 
†† This would build on Grieco (2013), which allows for the possibility that multiple equilibria are played in the data 
within the context of a static discrete game. 
‡‡ All-solution homotopy methods (Judd, Renner and Schmedders 2012) have the potential to be very useful in this 
respect. 
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Information.  In many empirical settings, it is common to find that two observations (e.g., two 
markets) with very similar observable exogenous characteristics have very different observed 
endogenous outcomes (e.g., market structure, prices). In practice, the most common (almost 
universal) explanation for this empirical finding is that these markets are different in the values 
of some exogenous fundamentals that are unobservable to the researcher. However, there are 
situations in economics where it is plausible to argue that a substantial part of the observed 
variation in endogenous outcomes might be explained by variation in agents’ beliefs, and not by 
variation in fundamentals. The separate identification of the contribution of variation in 
unobserved fundamentals versus variation in beliefs is an important problem, though admittedly 
a challenging one, in the empirical analysis of games or equilibrium models in general. There is 
very little work on this topic, but it provides a promising area for future research. 

Related to the previous point, most of the empirical work on the importance of beliefs to explain 
variation outcomes has been concentrated in Experimental Economics, and more specifically in 
empirical work in laboratory experiments. Extending this work to field experiments could be 
extremely valuable, though an important restriction in lab experiments is that preferences are 
assumed to be elicited and completely known to the researcher (up to some private information 
shock). This assumption can be relaxed, and payoffs and beliefs can be separately identified, 
with the help of randomized field experiments. The implementation of randomized field 
experiments, where the researcher can control for part of the players' payoffs (e.g., a randomized 
subsidy) can be designed to generate the type of exclusion restrictions needed to separately 
identify payoffs and beliefs, and they can be useful tools to bring together ideas in Experimental 
Economics, Quantitative Marketing, and Empirical IO. 

Incorporating Learning.  Formally incorporating learning into estimable IO models has the 
potential to address the challenges posed by multiplicity and to extend the literature on 
information structures.  The literature on the theory of learning in games (Fudenberg and Levine 
1998) is motivated by the notion that firms may need to engage in an adaptive process through 
which   they   “learn”   how   to   play   an   equilibrium.§§  Incorporating learning of this sort into IO 
models would allow scholars to derive equilibrium selection mechanisms.***  There are several 
reasons why this might be a particularly attractive solution to the coherency problem that 
multiplicity poses.  First, the selection mechanisms would be rooted in basic assumptions about 
how firms learn to play an equilibrium.  Second, such models would not only predict which 
equilibrium is selected but also shed light on the process through which firms arrive at the 
selected equilibrium over time. A recent paper by Doraszelski, Lewis, and Pakes (2014) is one of 
the first to start addressing such questions. 

In the literature on the theory of learning in games, assumptions regarding how firms learn to 
play an equilibrium often relate—either directly or implicitly—to the   game’s   information  
structure and, in particular, how it evolves over time as the game is played.  Incorporating 
learning into IO models would therefore make it possible to extend the literature on information 
structures in natural directions.  For example, biased beliefs could endogenously evolve to 

                                                 
§§ An early example of empirical research that incorporates learning into games is provided by Gardete (2013). 
*** Lee and Pakes (2009) explore the implications for equilibrium selection of best reply and fictitious play learning 
processes within the context of a static game of bank ATM allocation. 
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equilibrium beliefs, and an incomplete information environment could endogenously evolve to a 
complete information environment. 

The foundational research on the theory of learning in games helped inspire more recent research 
in behavioral economics on reinforcement learning (Roth and Erev, 1995), adaptive learning 
(Camerer and Ho, 1999), and sophisticated learning (Camerer, Ho and Chong, 2002) in games. 
††† Incorporating these richer models of learning into IO models would allow scholars to explore 
how firm behavior is affected by past successes and the history of how rivals played, as well as 
the extent to which firms are sophisticated/forward-looking. One appealing aspect of the 
experience-weighted attraction (EWA) model of Camerer and Ho (1999) is that it nests some of 
the more important learning processes from the theory of learning in games.  Formally 
incorporating EWA into IO models would allow scholars to test these learning algorithms 
against one another or, more generally, to assess the extent to which each process is reflective of 
the learning that occurs in the data. One challenge is that the aforementioned frameworks are 
typically applied to games with known payoffs that are fixed across periods, whereas IO 
researchers are often interested in stochastic environments. 

Rather than specifying in detail the mechanisms through which agents learn (as done in EWA), 
one could pursue equilibrium selection using an axiomatic approach rooted in the theory of 
learning in games.  This would allow for equilibrium selection that is consistent with selected 
learning processes, but would not require formally incorporating learning into IO models. 
Mathevet (2013) advocates this route and proposes an axiomatic approach to study repeated 
interaction between two boundedly rational players. After theoretically characterizing the 
axioms’   solution,   he   evaluates   its   experimental   performance   in eight different repeated games 
and finds that it performs at least as well as the EWA-learning model of Camerer and Ho (1999) 
and the reinforcement learning model of Erev and Roth (1998). 
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