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1 Introduction

This paper studies supermodular mechanism design in environments with interdepen-

dent valuations and arbitrary (in particular, multidimensional) finite type spaces. This

approach was introduced by Mathevet (25) in di↵erentiable quasilinear environments

with private values and one-dimensional types.1 The main motivation is to design direct

mechanisms that are robust to certain forms of bounded rationality while controlling

for equilibrium multiplicity. It is important to extend supermodular mechanism design

to environments with informational and allocative externalities and multidimensional

types for at least two reasons. First, these environments capture many realistic situa-

tions. Second, it is often impossible to use dominant strategy or ex post implementation

in these settings (see Jehiel et al. (22) and Section 2), and thus the designer may re-

sort to Bayesian equilibrium as a solution concept. It becomes useful to have a simple

method for improving the behavioral robustness of Bayesian mechanisms.

In this paper, we are concerned with the design of supermodular mechanisms whose

equilibrium set is of minimal size. We call this minimal supermodular implementation.

Supermodular mechanism design aims to induce the right incentives so that agents play

a supermodular game. Supermodular games are games where players have monotone

best responses, i.e. each player wants to play a “larger” strategy if others do so as well.

On the theoretical front, the reasons for using supermodular mechanisms stem from

Milgrom and Roberts (27), (28) and Vives (33): supermodular games have extremal

equilibria, a smallest and a largest one, that enclose all the iteratively undominated

strategies and all the limit points of all adaptive and sophisticated learning dynam-

ics. Therefore, supermodular games are robust to a wide range of behaviors, including

boundedly rational behaviors. In particular, if the designer had the opportunity to use

her mechanism repeatedly, then adaptive learners (Milgrom and Roberts (27)) would

end up within the interval prediction, which is the interval between the extremal equi-

libria. Therefore, the objective of minimizing the size of the interval prediction has

several virtues. It minimizes the multiple equilibrium problem, since all equilibria are

contained in it.2 It also guarantees a more accurate convergence of the learning dynam-

ics. Ideally, this interval reduces to a single point in certain situations (see Section 2),

thereby solving the multiplicity issue and ensuring convergence of all dynamics.

Supermodular mechanisms have other attractive theoretical properties. Not only

are their mixed strategy equilibria unstable (Echenique and Edlin (17)), which justifies

1Chen (8) was the first to propose a supermodular mechanism (to implement the Lindahl corre-
spondence).

2If the outcome function of the mechanism is continuous and if the interval prediction is tight, then
all equilibrium outcomes are close, so that the output of the mechanism must be close to the socially
desirable objective.
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ruling them out of the analysis, but many pure equilibria are stable, such as the extremal

equilibria (Echenique (16)). Thus, a perturbation should not destabilize permanently

a socially desirable alternative implemented via a supermodular mechanism (provided

the underlying equilibrium was stable).

The robustness properties of supermodular mechanisms have been corroborated by

several experiments. Chen and Gazzale (11) run experiments on a game for which

they control the amount of supermodularity. They show how convergence in that game

is significantly better when it is supermodular. Healy (18) tests five public goods

mechanisms and he observes that subjects learn to play the equilibrium only in those

mechanisms that induce a supermodular game. Other experiments (e.g. Chen and Plott

(9), and Chen and Tang (10)) provide results emphasizing the importance of dynamic

convergence in the context of implementation. Most of these experiments demonstrate

that convergence to an equilibrium is not a trivial issue.

In this paper, we generalize supermodular mechanism design to environments with

allocative externalities, interdependent valuations (i.e. informational externalities) and

arbitrary (finite) type spaces. There are two important reasons for doing so.

Firstly, it allows covering mechanism design problems of interest. The importance

of allocative externalities is well documented in the literature. Jehiel and Moldovanu

(20) use patent licensing in an oligopolistic market as an example. Informational exter-

nalities are also a realistic assumption, proved to be interestingly challenging by many

papers (Cremer and McLean (13), Maskin (24), Dasgupta and Maskin (14), Perry and

Reny (30), Chung and Ely (12), Bergemann and Morris (2), etc). Finally, it is often

natural to interpret information as a multidimensional type in many design problems.

Consider, for example, oil companies bidding to obtain a drilling permit. Their private

information is modeled as a multidimensional signal (e.g. expected amount of oil in the

oil field, proximity to other reserves, etc).

Secondly, it is di�cult to use dominant strategy or ex post implementation in those

environments — with allocative externalities, interdependent valuations and multidi-

mensional types — and thus behaviorally-robust Bayesian mechanisms become espe-

cially appealing. In quasilinear environments with interdependent valuations and mul-

tidimensional types, many impossibility results limit the set of available solution con-

cepts. The conclusions are rather pessimistic about dominant strategy equilibrium and

ex post equilibrium. Williams and Radner (34) show that e�cient dominant strategy

implementation is generally not possible when agents have interdependent valuations.

Jehiel et al. (22) prove a strong impossibility result: when types are multidimensional

and valuations are interdependent, only trivial decision rules can generically be imple-

mented in ex post equilibrium. If the designer wants to implement a meaningful social

3



choice function, not even necessarily e�cient, she may have to use Bayesian equilib-

rium as a solution concept (see Section 2). Even then, impossibility results exist. Jehiel

and Moldovanu (21) show that it is di�cult to reconcile Bayesian incentive compat-

ibility with some e�ciency constraint. These negative results indicate that Bayesian

equilibrium may often be a natural candidate as a solution concept. However, playing

a Bayesian equilibrium requires more, in general, on the part of the agents. Agents

have to be Bayesian rational, and the information structure and rationality have to be

common knowledge among the agents (Brandenburger and Dekel (5)). As other Nash-

related concepts, Bayesian equilibrium calls for correct predictions of opponents’ play

to determine one’s own strategy. In this context, the ability to construct supermodular

Bayesian mechanisms is attractive, because eventual play of some equilibrium can be

achieved by unsophisticated agents who follow simple behavioral rules.

Our paper provides methods for converting any truthful Bayesian mechanism into

a (truthful) supermodular mechanism whose equilibrium set is of minimal size. The

idea is to create complementarities between agents’ announcements by augmenting the

original transfer scheme with a function. This function vanishes in expectation and

therefore preserves incentive compatibility. Although there exist many ways in which

a mechanism can be transformed into a supermodular mechanism, we derive the one

that most adequately addresses the multiple equilibrium problem. To this purpose, we

add just enough strategic complementarities to ensure that a supermodular game is

induced, but not in any excess of that level.

We present two sets of results for minimal supermodular implementation. In both

instances, “best” is used to designate the mechanism with the smallest interval predic-

tion. The first result shows that if a social choice function is implementable, then its

decision rule can be implemented by the best supermodular mechanism among all the

supermodular mechanisms whose transfers are in a certain class. No additional condi-

tion is required. In particular, this result holds for all (implementable) decision rules

and all valuation functions. The result also provides an explicit transfer scheme. The

second result characterizes the overall best supermodular mechanism among all possi-

ble supermodular mechanisms or transfers: if a social choice function is implementable

and satisfies a reducibility condition, then its decision rule can be implemented by the

(overall) best supermodular mechanism. Although the first result reaches a weaker

conclusion than the second, it applies under very general conditions. Finally, we pro-

vide conditions under which truthtelling is the essentially unique equilibrium. For fine

(or rich) type spaces, this ensures excellent stability properties: all learning dynamics

converge to the truthful equilibrium, and the game is dominance solvable.

Beyond the generalizations of supermodular mechanism design, this paper provides
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new insights into the design of minimally supermodular mechanisms. The use of finite

types clarifies the existence and the construction of these mechanisms. For example,

we show that the problem of building minimally supermodular mechanisms is equiva-

lent to solving a system of linear equations. This allows the application of numerical

methods for designing these mechanisms. Further, it becomes possible to derive neces-

sary and su�cient conditions for the existence of minimal transfers. Nonetheless, these

conditions are not practical, and they do not always come with explicit formulas for

the transfers. To remedy these shortcomings, we propose a simple su�cient condition

under which transfers take a closed form.

A number of papers are related to our work. The first paper to present a supermodu-

lar mechanism was Chen (8). Mathevet (25) developed supermodular mechanism design

as a general method under incomplete information. Since his paper is the closest to

ours, our contribution deserves clarification. As already said, our environment is more

general, due to the interdependent values and the multidimensional types, although

this comes at the cost of finite types. In Mathevet (25)’s environment, dominant strat-

egy implementation is still a powerful tool. This paper also clarifies the construction of

minimally supermodular mechanisms, especially with our reducibility condition and the

formulation of this problem as a linear system. Finally, we propose di↵erent options for

minimal supermodular design when su�cient conditions fail, while Mathevet (25) does

not. In particular, our first main result always applies, and the formulation as a linear

system can yet allow finding solutions. Cabrales and Serrano (7) study implementation

with boundedly rational agents who follow adaptive better response dynamics. This

learning dynamics excludes learning processes that we study here. Finally, our paper is

related to the literature on rationalizable implementation (e.g. Abreu and Matsushima

(1), and Bergemann, Morris, and Tercieux (4)), because this solution concept has the

potential to imply nice learning properties when a unique equilibrium is rationalizable.

Abreu and Matsushima (1) show that any social choice function can be virtually imple-

mented in iteratively undominated strategies. Their result is very powerful but their

mechanism remains complex, as the dimension of the message space must be arbitrar-

ily large. Experimental evidence does not support this mechanism (Sefton and Yavas

(31)). Instead we look at direct mechanisms and exact implementation. In general, the

concept of rationalizability is such that a strategy may not be rationalizable because it

is dominated by another dominated strategy, an argument a la Jackson (19). For ex-

ample, in Bergemann, Morris, and Tercieux (4), the best responses are not well-defined

o↵-equilibrium, and o↵-equilibrium behaviors are one of our motivations.

The remainder of the paper is organized as follows. A motivating example is pre-

sented in Section 2. Section 3 defines the framework of supermodular mechanism de-
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sign. Section 4 introduces the notion of minimal implementation and contains our two

main results. Section 5 studies supermodular implementation in unique equilibrium.

Concluding remarks appear in Section 6. All proofs are relegated to the Appendix.

2 Motivating Example

This section illustrates our approach in a simple public good example. In this example,

the designer would like to implement an e�cient allocation, but this cannot be done

in ex post equilibrium (hence in dominant strategies). Thus, the designer may decide

to work with Bayesian implementation. We show how the designer can start from any

truthful Bayesian mechanism, in particular one with poor stability properties, and turn

it into a (truthful) supermodular mechanism with a unique equilibrium.

Consider a social planner who has to make a decision between two public goods,

A or B, in a society that consists of two agents 1 and 2.3 Each agent i has a type

✓
i

= (✓i

A

, ✓i

B

) in {(2, 1), (1, 2)}. Types are drawn with the following probabilities, which

is common knowledge: Pr(✓1 = (2, 1)) = 7/20 and Pr(✓2 = (2, 1)) = 9/10. Agent i’s

valuation for public good g 2 {A, B} at types ✓ = (✓1, ✓2) is V i

g

(✓). The valuations are

given in the following matrix (rows represent 1’s type or report):

V (✓) (2, 1) (1, 2)

(2, 1)
V 1

A

= 0 V 1
B

= .24

V 2
A

= 0 V 2
B

= .01

V 1
A

= 0 V 1
B

= .05

V 2
A

= 0 V 2
B

= �.09

(1, 2)
V 1

A

= 0 V 1
B

= �.11

V 2
A

= 0 V 2
B

= .1

V 1
A

= 0 V 1
B

= �.08

V 2
A

= 0 V 2
B

= .97

The valuations for alternative A are always zero. Moreover, each agent’s type a↵ects

both agents’ valuations for alternative B. In particular, agent 1’s valuation for good B

is larger when her type matches agent 2’s type, i.e. when ✓1 = ✓2. Agent 2’s valuation

for good B, however, is always larger when 1’s type is (1, 2), regardless of her true type.

The e�cient decision rule is

x(✓̂) (2, 1) (1, 2)

(2, 1) B A

(1, 2) A B

which we assume the designer would like to implement. Denote agent i’s transfers as a

function of reported types by:

3Throughout the rest of the paper we will refer to the designer (or planner) and agent 1 as “she”,
and agent 2 as “he”.
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t
i

(✓̂) (2, 1) (1, 2)

(2, 1) t1
i

t2
i

(1, 2) t3
i

t4
i

The e�cient decision rule is not ex post incentive compatible.4 To see why, let us con-

sider the ex post incentive compatibility conditions for agent 1 when agent 2’s type is

✓2 = (1, 2) and is truthfully reported. At type ✓1 = (2, 1), ex post incentive compati-

bility for agent 1 requires

t21 � .05 + t41.

At type ✓1 = (1, 2), ex post incentive compatibility requires

�.08 + t41 � t21.

The last two inequalities cannot be jointly satisfied, which proves that the e�cient

decision rule is not ex post implementable. The designer is therefore inclined to work

with Bayesian implementation. We proceed to show that there exist transfers that

implement the e�cient decision rule in Bayesian equilibrium.

Bayesian incentive compatibility for agent 1 requires that truthtelling be weakly

preferred to lying when her true type is (2, 1)

.9(.24 + t11) + .1(0 + t21) � .9(0 + t31) + .1(.05 + t41)

and when her true type is (1,2)

.9(0 + t31) + .1(�.08 + t41) � .9(�.11 + t11) + .1(0 + t21).

Combining these two inequalities, we obtain that for any t1 such that

.1 � .9(t11 � t31) + .1(t21 � t41) � �.2

the e�cient decision rule is Bayesian incentive compatible for agent 1. Similarly,

Bayesian incentive compatibility is satisfied for any t2 such that

.7 � .35(t12 � t22) + .65(t32 � t42) � .1.

In particular, the designer can choose:

4Ex post incentive compatibility requires that for all i and ✓, ui(x(✓), ✓) � ui(x(✓0i, ✓�i), ✓) for all
✓

0
i. This means that if all other agents report truthfully, truthtelling is a best response for each agent

i at every possible realizations of types ✓.
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t1(✓̂) (2, 1) (1, 2)

(2, 1) -1 10

(1, 2) 1 -7

t2(✓̂) (2, 1) (1, 2)

(2, 1) 3 -3.5

(1, 2) -1 2

As we will see, the magnitude of these transfers is large enough to o↵set any consider-

ation about the valuations. Given these transfers, the resulting payo↵ matrix in the ex

ante Bayesian game is:

EU truthtelling constant (2,1) constant (1,2) always lie

truthtelling .2⇤; .4⇤ .4; .4 -1.1; .2 -1; .2

constant (2,1) .1; 2.4 -1; 3.1⇤ 10⇤; -3.5 8.9⇤; -2.8

constant (1,2) .2;-.6 1⇤; -1 -7; 2.1⇤ -6.2; 1.8

always lie .1; 1.3 -.4; 1.7⇤ 4.1; -1.6 3.7;-1.2

where row entries and first payo↵s correspond to agent 1, while column entries and sec-

ond payo↵s correspond to agent 2. Best responses are denoted by asterisks. The game

described by this payo↵ matrix is not (ex ante) dominance solvable. Despite being the

unique equilibrium, truthtelling is unstable; after a small perturbation, convergence to

it fails under various dynamics. The intuition goes as follows. If agent 2 plays the con-

stant announcement (1, 2) irrespective of his true type, then agent 1 will best-respond

by announcing (2, 1) regardless of her type. In return, agent 2 will also announce (2,

1) for every type. Then agent 1 will want to play the constant announcement (1, 2),

followed by a constant announcement of (1, 2) by agent 2. We are back to the original

strategy of agent 2. These transfers give rise to cycling behaviors and the problem

extends beyond best-response dynamics.

To overcome this problem, we propose converting the mechanism into a supermod-

ular mechanism with the smallest equilibrium set. The idea is to modify the original

transfers in a way that adds complementarity between agents’ announcements, but not

so much as to create multiple equilibria. In Section 4, we provide the formula for this

transformation. When applied to the current example, the formula outputs

tSM

1 (✓̂) (2, 1) (1, 2)

(2, 1) .1 .1

(1, 2) .18 .4

tSM

2 (✓̂) (2, 1) (1, 2)

(2, 1) .4 -.04

(1, 2) .4 .14

which translates into the ex ante payo↵ matrix:

EU truthtelling constant (2,1) constant (1,2) always lie

truthtelling .2⇤; .4⇤ .2⇤; .4 .2; .2 .2; .2

constant (2,1) .1; .4 .1; .5⇤ .1; -.04 .1; .1

constant (1,2) .2; .4⇤ .2; .4 .4⇤; .3 .4⇤;.2

always lie .1; .4 .1 .5⇤ .3; .02 .3; .1
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This payo↵ matrix describes a supermodular game — assuming (1, 2) > (2, 1) — in

which truthtelling is the unique equilibrium. Supermodularity means that, for every

true type, each agent wants to make larger announcements (under the assumed order)

if the other agent does so as well. This mechanism has nice properties. The reader can

verify that iterative deletion of strictly dominated strategies gives a unique prediction,

truthtelling. By Milgrom and Roberts (27), all adaptive learning dynamics converge to

the truthful equilibrium, wherever they are initiated. The original instability problem

is solved. In Section 7.1 of the Appendix, we present another version of this example

where the designer starts with transfers that create multiple equilibria. In this case,

our transformation technique delivers a supermodular mechanism in which truthtelling

is the unique equilibrium.

3 Finite Supermodular Design: The Framework

Consider n agents, each endowed with quasilinear preferences over a set of alterna-

tives. The set of players will be denoted by N . An alternative is a vector (x, t) =

(x1, . . . , xn

, t1, . . . , tn), where x
i

is an element of a set X
i

⇢ Rmi , x is an element of

X =
Q

n

i=1 X
i

, and t
i

2 R for all i 2 N . In this environment, x
i

is interpreted as agent

i’s allocation, x is the complete allocation profile, and t
i

is the money transfer i receives.

Each agent i has a finite type space ⇥
i

with generic element ✓
i

. The types of agents

other than i are denoted by ✓�i

2 ⇥�i

⌘
Q

j 6=i

⇥
j

, and ✓ 2 ⇥ ⌘
Q

i2N

⇥
i

denotes a

full type profile. There are no restrictions on the nature of the type spaces: each ⇥
i

could be, for example, a subset of R, Rn, or any other finite collection of elements.

Information is incomplete. There is a common prior with probability mass function

� on ⇥ known to the mechanism designer. Types are assumed to be independently

distributed, and � has full support.

A mechanism designer wishes to implement an allocation for each realization of

types. This objective is represented by a decision rule x : ⇥ 7! (x
i

(✓))n

i=1. To this end,

the designer sets up a transfer scheme t
i

: ⇥ ! R for each i. A mechanism is denoted

by � = ({⇥
i

}, (x, t)). Agents are asked to announce a type, and from the vector of

announced types, an allocation and a transfer accrue to each agent. The pair f = (x, t)

is called a social choice function. We adopt the conventional notation where ✓̂
i

is agent

i’s announced type, ✓̂�i

is the vector of announced types of all agents but i, and ✓̂

denotes the announced types of all agents.

Each agent i’s preferences over alternatives are represented by a utility function

u
i

(x, t
i

, ✓) = V
i

(x; ✓) + t
i

, where V
i

: X ⇥ ⇥ ! R is referred to as i’s valuation.
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This formulation allows for allocational externalities, as V
i

can also depend on the

allocations of agents other than i. It also captures the case of informational externalities

(interdependent valuations) since the valuations may depend on everyone’s types. Agent

i’s utility function at type ✓ in � is u�
i

(✓̂; ✓) = V
i

(x(✓̂); ✓) + t
i

(✓̂). A pure strategy for

agent i under incomplete information is a function ✓̂
i

: ⇥
i

! ⇥
i

that maps true types

into announced types. Strategy ✓̂
i

(·) is called a deception. Agent i’s (ex ante) utility

function in � is U�
i

(✓̂
i

(.), ✓̂�i

(.)) = E
✓

[u�
i

(✓̂(✓); ✓)].

A partial order � on a set X is a binary relation that satisfies reflexivity, antisym-

metry, and transitivity (see Topkis (32)). The couple (X,�) is referred to as a partially

ordered set. For x, y 2 X, if y � x and y 6= x, then we write y > x. A total order on

set X is a binary relation that satisfies comparability, antisymmetry, and transitivity.5

If � is a total order on X, then (X,�) is called a totally ordered set.

An order �⇤ on set X is a linear extension of a partial order � if (i) (X,�⇤) is a

totally ordered set and (ii) for every x, y in X, if y � x, then y �⇤ x. Elements that

are ordered under � remain identically ordered under �⇤, but �⇤ also orders all the

elements that are unordered under �.

Suppose that (X,�
X

) and (Y,�
Y

) are partially ordered sets. A function h : X ⇥
Y ! R has increasing (decreasing) di↵erences in (x, y) on X⇥Y if for all x00 �

X

x0 and

all y00 �
Y

y0, h(x00, y00)� h(x0, y00) � ()h(x00, y0)� h(x0, y0). In game-theoretic models,

increasing di↵erences translate the notion of strategic complementarity.

Take x, x0 in a partially ordered set (X,�). If x and x0 have a least upper bound

(greatest lower bound) in X, it is referred to as their join (meet) and denoted by x_ x0

(x ^ x0). A lattice is a partially ordered set that contains the join and meet of every

pair of its elements. Given a lattice X, a function h : X ! R is supermodular if

h(x) + h(x0)  h(x _ x0) + h(x ^ x0) for all x and x0 in X.

A finite game is a tuple (N, {(⇥
i

,�
i

)}, {w
i

}) where N is a finite set of players,

(⇥
i

,�
i

) is a partially ordered strategy set with finitely many elements for each i, and

w
i

: ⇥ ! R is Player i’s payo↵ function.

Definition 1 A finite game G = (N, {(⇥
i

,�
i

)}, {w
i

}) is supermodular if for all i 2 N ,

(1) (⇥
i

,�
i

) is a lattice, (2) w
i

has increasing di↵erences in (✓̂
i

, ✓̂�i

) on (⇥
i

, ⇥�i

), and

(3) w
i

is supermodular in ✓̂
i

on ⇥
i

for each ✓̂�i

2 ⇥�i

.

The rest of the paper focuses on totally ordered sets (⇥
i

,�
i

). In this case, require-

ments (1) and (3) in definition are trivially satisfied and we only need to satisfy (2) to

ensure that the game is supermodular.

5Comparability means that x � y or y � x for all x, y in X. Note that comparability implies
reflexivity; hence, every total order is also a partial order.
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The game induced by mechanism � can be formulated at three stages: Ex ante,

interim, and ex post (complete information). Let us denote the game induced ex post

by G(✓) = (N, {⇥
i

,�
i

}, {u�
i

(· ; ✓)}). Let G = (N, {⇥⇥i
i

,�
i

}, {U�
i

}) be the ex ante

Bayesian game induced by �. Among these three formulations, the paper considers

supermodularity at the ex post level, because this is the strongest requirement. If the

ex post game is supermodular for all possible realizations of types ✓, then the game will

be supermodular in its ex ante and interim formulations.

Definition 2 A social choice function f = (x, t) is (truthfully) supermodular imple-

mentable if truthtelling, i.e. ✓̂
i

(✓
i

) = ✓
i

for all i, is a Bayesian equilibrium of G and if

G(✓) is supermodular for each ✓.

4 Minimal Supermodular Implementation

In this section, we present two results dealing with minimally supermodular mecha-

nisms. The main issue with supermodular implementation lies in finding the appropri-

ate amount of complementarity to add to a mechanism. While complementarities lead

to good dominance and learning properties, via the monotonicity of the best responses,

excessive complementarities may generate multiple equilibria. Therefore, one negative

consequence might be enhancing the “learnability” of undesirable equilibria. In our

model, only the truthful equilibrium outcome is known to be socially desirable, hence it

may be easier for agents to learn, but they may learn to play an untruthful equilibrium.

This section is organized as follows. First, we present the foundational results

and concepts that underlie the method behind minimal supermodular implementation.

Then we present our results in separate sections. Our first result is that, for any im-

plementable social choice function, its decision rule can be minimally supermodular

implemented by transfers within a class. This result holds for all valuation functions.

This is a strong result, conditionally on choosing transfers within the class. Our second

result does not restrict attention to a class of mechanisms or transfers. For any val-

uation functions, if a social choice function is implementable and satisfies a su�cient

condition, then its decision rule can be minimally supermodular implemented among all

transfer functions making the mechanism supermodular. Both results provide explicit

expressions for the transfers.

Let us introduce some definitions. For all i, let (�1
i

,�2
i

) be a pair of orders such

that �1
i

is a total order on ⇥
i

and �2
i

is a total order on ⇥�i

. Let ��i

be the product

order on ⇥�i

obtained from {�1
j

}: ✓00�i

��i

✓0�i

i↵ ✓00
j

�1
j

✓0
j

for all j 6= i. A profile of

orders {(�1
i

,�2
i

)}
i

is consistent if for all i, �2
i

is a linear extension of ��i

on ⇥�i

.
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4.1 Foundations

Mathevet (25) relates the degree of complementarities to the size of the equilibrium set

via the following binary relation.

Definition 3 The binary relation ⌫ID on the space of transfer functions is defined

such that t̃ ⌫ID t if for all i 2 N and for all ✓00
i

�1
i

✓0
i

and ✓00�i

��i

✓0�i

, t̃
i

(✓00
i

, ✓00�i

) �
t̃
i

(✓00
i

, ✓0�i

)� t̃
i

(✓0
i

, ✓00�i

) + t̃
i

(✓0
i

, ✓0�i

) � t
i

(✓00
i

, ✓00�i

)� t
i

(✓00
i

, ✓0�i

)� t
i

(✓0
i

, ✓00�i

) + t
i

(✓0
i

, ✓0�i

).

This binary relation orders transfers according to how increasing di↵erences are. In

di↵erentiable environments, this definition is equivalent to saying that t̃ ⌫ID t, if and

only if, for all i 2 N the cross partial derivatives of t̃
i

are larger than those of t
i

,

@2t̃
i

(✓)/@✓
i

@✓
j

� @2t
i

(✓)/@✓
i

@✓
j

, for all j and ✓. This definition aims to capture the

amount of complementarities contained in transfers and compares them accordingly.

While relation ⌫ID is transitive and reflexive, it is not antisymmetric. Denote the set

of ⌫ID equivalence classes of transfers by T .6

In a supermodular game, the interval prediction is the interval between the largest

and the smallest equilibrium. We compare supermodular mechanisms according to the

size of the interval prediction of their induced game. The next proposition, taken from

Mathevet (25), provides the tool to do so. If transfers t00 generate more complementar-

ities than t0, and if both induce truthtelling and supermodularity, then the equilibrium

set induced by t00 includes that of t0.

For any t 2 T such that f = (x, t) is supermodular implementable, let ✓
t

(·) and

✓t(·) denote the largest and the smallest (Bayesian) equilibria of the induced game.

Proposition 1 If (x, t00) and (x, t0) are supermodular implementable social choice func-

tions and if t00 ⌫ID t0, then [✓t

0
(·), ✓t

0
(·)] ⇢ [✓t

00
(·), ✓t

00
(·)].

This proposition implies that the objective of minimizing the equilibrium set coin-

cides with the objective of minimizing the complementarities. A social choice function

f = (x, t⇤) will be minimally supermodular implementable if the transfers t⇤ elicit

truthful revelation and induce a supermodular game with the weakest complementari-

ties. This will give the tightest interval prediction around the truthful equilibrium.

4.2 Minimal Implementation under Total Orders

This section addresses minimal supermodular implementation within a class of trans-

fers. We explicitly show how to convert any truthful mechanism into a supermodular

mechanism while controlling for the intensity of the complementarities.

6Each equivalence class contains transfer functions t and t̃ such that t̃ ⌫ID t and t ⌫ID t̃ while t 6= t̃.
Any quasi-order can be transformed into a partial order by using equivalence classes.
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Our approach takes advantage of the totality of orders �1
i

. If the strategy sets

are totally ordered, then the only requirement to check to satisfy Definition 1 is the

increasing di↵erences condition. Therefore, if the transfer functions ensure that (I) for

each ✓ and i, u�
i

(✓̂, ✓) has increasing di↵erences in (✓̂
i

, ✓̂�i

) on (⇥
i

,�1
i

) ⇥ (⇥�i

,��i

),

then (II) the ex post game G(✓) is supermodular for each ✓, as desired. In this section,

we restrict attention to the class of transfers that guarantee that (III) for each ✓ and i,

u�
i

(✓̂, ✓) has increasing di↵erences in (✓̂
i

, ✓̂�i

) on (⇥
i

,�1
i

)⇥ (⇥�i

,�2
i

), where {(�1
i

,�2
i

)}
i

is a consistent profile of orders. Since �2
i

is a linear extension of ��i

, (III) implies (I),

hence (II) holds. Consider the following family of transfers:

Definition 4 F(x, {(�1
i

,�2
i

)}
i

) is the set of transfers t 2 T such that (x, t) is truth-

fully implementable and u�
i

(✓̂, ✓) has increasing di↵erences on (⇥
i

,�1
i

)⇥ (⇥�i

,�2
i

) for

each ✓ and i, where {(�1
i

,�2
i

)}
i

is consistent.

We now define our concept of minimal supermodular implementation.

Definition 5 A social choice function f = (x, t⇤) is minimally supermodular imple-

mentable over family F if it is supermodular implementable, t⇤ 2 F , and t ⌫ID t⇤ for

all transfers t 2 F .

Minimally supermodular transfers must elicit truthful revelation and produce the

supermodular game with the weakest complementarities among F . This gives the

tightest equilibrium set within the class. Here is our first main result.

Theorem 1 If f = (x, t) is implementable, then for any consistent profile of orders

{(�1
i

,�2
i

)}
i

there exist t⇤ such that (x, t⇤) is minimally supermodular implementable

over F(x, {(�1
i

,�2
i

)}
i

).

The theorem reaches a strong conclusion: for any implementable social choice func-

tion, its decision rule can be minimally supermodular implemented. There are no other

restrictions on the decision rule or the valuation functions. Despite the finiteness of

the type sets, there are infinitely many transfers that can supermodularly implement a

decision rule for a given consistent profile of orders. Having a method for choosing the

best among them is useful. To understand this, as well as our construction, start from

any truth-revealing transfers {t
i

}, and define

t⇤
i

(✓̂
i

, ✓̂�i

) = �
i

(✓̂
i

, ✓̂�i

)� E
✓�i [�i

(✓̂
i

, ✓�i

)] + E
✓�i [ti(✓̂i

, ✓�i

)]. (4.1)

Transfers t⇤
i

satisfy E
✓�i [t

⇤
i

(✓
i

, ✓�i

)] = E
✓�i [ti(✓i

, ✓�i

)] for all ✓
i

, i.e. these two transfer

functions have the same expected value when agents other than i report their type

13



truthfully. Thus, if agent i finds it optimal to play truthfully under t
i

(when others do

so), then she also finds it optimal to do so under t⇤
i

. We conclude that for every collection

of functions {�
i

}, the transfers t⇤ also elicit truthful revelation. The problem becomes

the choice of each �
i

, as there are infinitely many ways of inducing a supermodular

game given a profile of orders. The proof provides an explicit formula for {�
i

} so

that transfers t⇤ are the best within the family from the perspective of minimizing the

interval prediction.

To sum up, our method suggests totally ordering type sets and then using our for-

mula. Can this method be useful? In Section 2, it delivered a supermodular mechanism

with a unique equilibrium, while ex post implementation was not an option. In the Ap-

pendix (see Section 7.1), it also delivers a supermodular mechanism with a unique

equilibrium, while the original transfers produce multiple equilibria.

Given a choice of consistent orders, the theorem provides appropriate transfers.

But there are many possible orders and the designer may want to discriminate among

the many associated transfers. Suppose that the designer has a concept of distance,

i.e. a metric d on ⇥. Then Theorem 1 can be used to select the transfers that lead

to the smallest equilibrium set across all the families. Let F⇤(x) be the union of

F(x, {(�1
i

,�2
i

)}
i

) over all consistent orders {(�1
i

,�2
i

)}
i

.

Corollary 1 If f = (x, t) is implementable, then there exist transfers t⇤⇤ and con-

sistent orders {(�⇤1
i

,�⇤2
i

)}
i

such that (x, t⇤⇤) is minimally supermodular implementable

over F(x, {(�⇤1
i

,�⇤2
i

)}
i

) and t⇤⇤ give the smallest interval prediction in F⇤(x) given d.

Our corollary ultimately says that for every metric, there is a choice of total orders

(�⇤1
i

,�⇤2
i

) for each i that is most adapted to d, since the equilibrium set resulting from

the corresponding minimal transfers is minimized (under d) among all of F⇤(x). The

explanation is simple. For each profile of orders, the theorem provides the transfers that

deliver the smallest interval prediction within the corresponding class. Since there are

finitely many types, there are finitely many (consistent) profiles of orders. Therefore,

there must be a profile of orders whose associated transfers deliver the smallest interval

prediction under d among all of F⇤(x).

4.3 Minimal Implementation with Order Reducibility

In this section, we study (unconditionally) minimal supermodular implementation by

looking for the overall best transfers. In the previous section, the supermodular transfers

were minimal within a class. We required that, for every agent i, increasing di↵erences

be satisfied on (⇥
i

,�1
i

)⇥ (⇥�i

,�2
i

). By doing so, we did not consider all the transfers

that induce a supermodular game. In particular, some transfers may induce increasing

14



di↵erences on (⇥
i

,�1
i

)⇥(⇥�i

,��i

) but not on the above product set, yet this is su�cient

for our purpose. This is the case because ��i

typically orders fewer elements than

�2
i

, which a↵ects the number of inequalities that have to hold to satisfy increasing

di↵erences. To summarize, our previous theorem was a conditional form of minimal

supermodular implementation, while in this section, we aim for an unconditional form.

In what follows, the order on ⇥�i

is assumed to be the product order. For convenience,

we write V
i

(x, ✓) = V
i

(x
i

, ✓) for all i to emphasize the dimension of the decision rule on

which i’s utility depends. This notation does not exclude allocative externalities, for

an agent’s own allocation x
i

could be a function of another agent’s allocation.

Definition 6 A social choice function f = (x, t⇤) is minimally supermodular imple-

mentable if it is minimally supermodular implementable over family T .

We first show that the problem of finding minimally supermodular transfers is equiv-

alent to solving a system of linear equations. This insight is highly useful, as it allows

the application of standard methods and algorithms from numerical linear algebra (e.g.

Paige and Saunders (29), Demmel (15)). In what follows, we refer to the supermodu-

larity of a function h
i

: ⇥! R as the expression

h
i

(✓00
i

, ✓00�i

)� h
i

(✓00
i

, ✓0�i

)� h
i

(✓0
i

, ✓00�i

) + h
i

(✓0
i

, ✓0�i

)

where ✓00
i

�1
i

✓0
i

and ✓00�i

��i

✓0�i

. Consider (4.1) and note that the supermodularity

of t⇤
i

is equal to the supermodularity of �
i

. Therefore, our objective is to find a col-

lection {�
i

} that induces increasing di↵erences without introducing unnecessary com-

plementarities. Before deriving the linear system, we define the concept of immediate

successor/predecessor.

Definition 7 For x0 and x00 in a partially ordered set (X,�X), x00 is an immediate

successor of x0 (and x0 is an immediate predecessor of x00) if (a) x00 >X x0, and (b) the

set {x 2 X|x00 >X x >X x0} is empty.

A clear necessary condition for minimal supermodular implementation is that for

all ✓00
i

, ✓0
i

where ✓00
i

is an immediate successor of ✓0
i

in ⇥
i

, and for all ✓00�i

, ✓0�i

, where ✓00�i

is an immediate successor of ✓0�i

in ⇥�i

, it holds that the supermodularity of �
i

(i.e.

that of t⇤
i

) is equal to

�min
✓2⇥

[V
i

(x
i

(✓00
i

, ✓00�i

), ✓)�V
i

(x
i

(✓00
i

, ✓0�i

), ✓)�V
i

(x
i

(✓0
i

, ✓00�i

), ✓)+V
i

(x
i

(✓0
i

, ✓0�i

), ✓)]. (4.2)

If this equality were violated for some successive announcements, then we could build

another transfer function that satisfies it for these announcements. Since the super-

modularity of �
i

must always exceed (4.2) to induce a supermodular game, transfers
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{t⇤
i

} would not be the smallest under ⌫ID. While necessity seems clear, it is not obvi-

ous that it su�ces to search for {�
i

} whose supermodularity equals (4.2) for successive

types only. Su�ciency comes from the proof of Theorem 1: the supermodularity of any

function of two variables, when measured between non-successive elements, is equal to

the sum of the supermodularities between all pairs of immediate successors in between.

The intuition goes as follows. Take a function h with two variables, where each variable

is in N. Note that

h(2, 3)� h(2, 1)� (h(1, 3)� h(1, 1)) (4.3)

is equal to

[h(2, 3)� h(2, 2)� (h(1, 3)� h(1, 2))] + [h(2, 2)� h(2, 1)� (h(1, 2)� h(1, 1))]. (4.4)

The di↵erences between non-successive types (1 and 3 are not immediate successors in

(4.3)) are sums of di↵erences between successive types, (4.4). Therefore, if the super-

modularity of �
i

between successive types equals (4.2), which is the minimal require-

ment, then our previous observation implies that the supermodularity of �
i

between

non-successive types must also be minimal. In conclusion, we just need to be concerned

with supermodularity between successive types.

Given the above, we can view the problem of finding minimally supermodular trans-

fers t⇤
i

as finding a vector �
i

that solves a system of linear equations A · �
i

= b. In this

representation, �
i

is a column vector that contains the values of �
i

(✓) for every ✓ 2 ⇥:

�
i

= (�
i

(✓)); A is a sparse matrix whose nonzero elements (four per row) are equal to

-1 or 1, and positioned in a way that produces the supermodularity of �
i

(for successive

types); b is a vector containing expressions (4.2), i.e. minima of valuation di↵erences,

between successive types. We give an example of this system in Section 7.2.

The next result provides necessary and su�cient conditions for the existence of

minimally supermodular transfers. Such transfers exist if the condition described in

following proposition holds for all player i.

Proposition 2 (Farkas’ lemma) The linear system A · �
i

= b has a solution �
i

� 0 if

and only if, for every y, AT · y � 0 implies bT · y � 0.

Assuming �
i

� 0 is without loss of generality, because we can always add any positive

constant c to any �
i

that solves the system and obtain another solution. The reason is

that any constant gets canceled out when we form the supermodularity of a function.

Theorem 2 has an intuitive interpretation, and it imposes a nice joint-condition on

A and b. If we manipulate the supermodularities of the transfers by taking a linear

combination y, and if this generates complementarities (�T

i

AT y � 0), then it cannot
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be that the same linear combination of equations (4.2), i.e. the minimal valuations,

generates strict complementarities (bT · y < 0). If this were the case, the transfers

would add complementarities in places where there are already enough, hence they

could not be minimally supermodular. The theorem is intuitive but the condition is

impractical. Moreover, it establishes existence but does not provide explicit transfers.

As already said, there exist useful techniques from numerical linear algebra to solve

linear systems (e.g. Demmel (15) and Paige and Saunders (29)).

Nonetheless we provide a practical su�cient condition that ensures that minimal

transfers exist and have a simple closed-form representation. To that end, we impose a

richness condition on the decision rule.

Definition 8 A decision rule x(✓) is order reducible if for each i, there are sets

{Gi

p

}P

p=1 such that (a) ⇥�i

= [P

p=1G
i

p

, (b) for each ✓
i

, x
i

(✓) = x
i

(✓
i

, ✓0�i

) for all

✓�i

, ✓0�i

2 Gi

p

, and (c) if ✓�i

2 Gi

p

, all immediate successors of ✓�i

must be in Gi

p

[Gi

p+1.

Order reducibility ensures that, through the structure of the decision rule, oppo-

nents’ type profiles can be put into groups to form a linear path between the images of

x
i

. This linear path preserves the product order on ⇥�i

and does not impose any order-

ing of images between unordered types. To illustrate the definition, consider a setting

with n = 3 agents and ⇥
i

= {1, 2} for all i. Assume types are ordered according to the

usual order, i.e. 2 >1
i

1 for all i. Suppose the decision rule is x
i

(✓) = x(✓) = h(
P

✓
i

)

where h is some strictly increasing real-valued function (Mathevet (25) presents several

examples where the e�cient decision rule takes this form). This decision rule is order

reducible: for each agent i, it yields partition Gi

1 = {(1, 1)}, Gi

2 = {(1, 2), (2, 1)} and

Gi

3 = {(2, 2)}. Note that for n = 2, order reducibility is trivially satisfied by all decision

rules. Indeed, for each j 6= i, let each type in ⇥
j

form its own group with an index that

corresponds to the position of the type under >1
j

. Below we present an example where

order reducibility is violated.

Theorem 2 Let f = (x, t) be a social choice function such that x is order reducible.

If f is implementable, then there exist to such that (x, to) is minimally supermodular

implementable.

This theorem establishes minimal supermodular implementability of a class of so-

cial choice functions. For any implementable social choice function, if the decision rule

satisfies order reducibility, then there exist transfers to that guarantee truthful super-

modular implementation as well as the smallest equilibrium set among all supermodular

transfers. There are many ways in which a mechanism can be converted into a super-

modular one. It is therefore useful to describe the best way to convert it (and when it

17



exists) given the objective of minimized equilibrium set. In the proof of the theorem,

we provide an explicit formula for transfers to.

Order reducibility may seem to be a restrictive condition. Unfortunately, relaxing

it just a little in a simple setting already defies existence of minimal transfers, as

the following example demonstrates. Consider a three-agent two-type example. Let

⇥
i

= {1, 2} and 2 >1
i

1 for all i. Choose a decision rule x such that for some i, the only

possible grouping is Gi

1 = {(1, 1)}, Gi

2 = {(1, 2)}, Gi

3 = {(2, 1), (2, 2)} (actual group

indexes do not matter). This decision rule is not order reducible since (2,1), despite

being an immediate successor of (1,1), is in a group that does not immediately follow

G1
i

. For most valuation functions, a solution to our system of linear equations does not

exist in this case. Thus, our transfers to are not minimal but no other transfers are.

5 Uniqueness

In this section, we provide su�cient conditions for supermodular implementation in

unique equilibrium. In light of our current results, a natural question to ask is: When

does a minimal supermodular mechanism, i.e. one with the smallest equilibrium set,

actually have a unique equilibrium? If a supermodular game has a unique equilibrium,

then it is dominance-solvable, and many learning dynamics converge to the unique

equilibrium (Milgrom and Roberts (27)). Supermodular implementation is, therefore,

particularly appealing when truthtelling is the unique equilibrium. The study of unique

supermodular implementation allows us to draw some conclusions regarding the type

of environments — preferences and social choice functions — for which supermodular

implementation may be most useful.

Recall that i’s utility at type ✓ is denoted by u�
i

(✓̂; ✓) = V
i

(x(✓̂); ✓) + t
i

(✓̂). At this

point, the designer chooses a metric d
i

to measure the distance between the elements

of ⇥
i

for every i. For each i and ✓, let K
i

(✓) be a real number such that

(u�
i

(✓00
i

, ✓00�i

; ✓)� u�
i

(✓0
i

, ✓00�i

; ✓))� (u�
i

(✓00
i

, ✓0�i

; ✓)� u�
i

(✓0
i

, ✓0�i

; ✓))

 d
i

(✓00
i

, ✓0
i

)K
i

(✓)
X

j 6=i

d
j

(✓00
j

, ✓0
j

) (5.1)

for all ✓00
i

�1
i

✓0
i

and ✓00�i

��i

✓0�i

. The rhs of (5.1) is an upper bound on the complemen-

tarities between i’s own report and the other agents’ reports given some mechanism.

K
i

exists because there are finitely many types. This number gauges the sensitivity of

i’s di↵erential (or “marginal”) utility to an increase in the other agents’ reports and it

is endogenously determined by the chosen transfers. Similarly, for each i and ✓�i

, let
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�
i

(✓�i

) be a number such that

(V
i

(x(✓̂00
i

, ✓�i

); ✓00
i

, ✓�i

)� V
i

(x(✓̂0
i

, ✓�i

); ✓00
i

, ✓�i

))� (V
i

(x(✓̂00
i

, ✓�i

); ✓0
i

, ✓�i

)

� V
i

(x(✓̂0
i

, ✓�i

); ✓0
i

, ✓�i

)) � �
i

(✓�i

)d
i

(✓̂00
i

, ✓̂0
i

)d
i

(✓00
i

, ✓0
i

) (5.2)

for all ✓̂00
i

�1
i

✓̂0
i

and ✓00
i

�1
i

✓0
i

. The rhs of equation (5.2) is a lower bound on the comple-

mentarities between i’s own report and type when all other agents report truthfully. �
i

exists because there are finitely many types. This number represents a lower bound on

the sensitivity of i’s di↵erential (or “marginal”) valuation to an increase in i’s own type

and it is determined exogenously by the primitives of the model. In a di↵erentiable

environment, numbers K
i

and �
i

would be bounds on cross-partial derivatives.

Intuitively, these numbers represent opposite forces regarding equilibrium multiplic-

ity and uniqueness (Mathevet (26)). An agent who is extremely sensitive to her own

type tends to make decisions independently of other agents. Large �
i

’s, therefore, fa-

vor uniqueness. On the other hand, strong strategic complementarities connect agents

together and create interdependence. Large K
i

’s, therefore, favor multiplicity.

In the next results, we formalize this trade-o↵ into simple equations. Denote the

truthful strategy by ✓T

i

(·). Use the standard notation for intervals, e.g. (✓
i

, ✓⇤
i

) = {✓̂
i

:

✓
i

<1
i

✓̂
i

<1
i

✓⇤
i

}. Strategy profiles are ordered by using the pointwise order, also denoted

� for simplicity: a strategy profile is larger than another if each player reports a larger

type in the former than in the latter for every true type. Let K̄
i

(✓
i

) = max
✓�i K

i

(✓) for

each i and ✓
i

.

Proposition 3 Let f be a supermodular implementable social choice function. Choose

any profile ✓⇤(·) � ✓T (·). If there exist i, ✓
i

and ✓̂
i

2 [✓
i

, ✓⇤
i

(✓
i

)) such that

K̄
i

(✓
i

)
X

j 6=i

E
✓j [dj

(✓⇤
j

(✓
j

), ✓
j

]� E
✓�i [�i

(✓�i

)]d
i

(✓̂
i

, ✓
i

) < 0 (5.3)

then ✓⇤(·) is not a Bayesian equilibrium. The same conclusion applies to any profile

✓⇤(·)  ✓T (·) if there exist i, ✓
i

and ✓̂
i

2 (✓⇤
i

(✓
i

), ✓
i

] such that (5.3) holds.

The lhs of (5.3) summarizes the trade-o↵ between opposite forces K̄
i

and E[�
i

(·)].
If a strategy profile ✓⇤(·) is ordered w.r.t. truthtelling and if the uniqueness e↵ect

dominates, i.e. condition (5.3) holds, then this profile does not fall within the bounds

of the interval prediction.7

7If the condition in the theorem holds, then it must hold when computed with the smallest possible
K̄i(✓i) and the largest possible �i(✓�i) (for each ✓�i). Therefore, using these “tightest” bounds for the
computation would be a natural way for a designer to utilize this theorem.
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This theorem cannot be useful for profiles such that ✓⇤
i

(✓
i

) and ✓
i

are either equal or

successive types for every i and ✓
i

. In that case, d
i

(✓̂
i

, ✓
i

) would be zero. Furthermore,

although the theorem is useful to determine whether a given strategy profile is not an

equilibrium, it does not allow a direct conclusion as to whether or not the mechanism

has a unique equilibrium. The next proposition addresses this question.

Before proceeding, we define a measure of coarseness on agents’ type spaces. For any

type ✓
i

in ⇥
i

, letting ✓0
i

and ✓00
i

be its immediate predecessor and immediate successor,

we define

"
i

(⇥
i

) = max
✓i2⇥i

max{d
i

(✓0
i

, ✓
i

), d
i

(✓
i

, ✓00
i

)}

to be a measure of the maximal distance between any type in ⇥
i

and its immediate

successor or predecessor. As we get closer to the continuous case, "
i

(⇥
i

) ! 0. Define

"(⇥) = max
i

"
i

(⇥
i

) to be the overall measure of coarseness.

Our next result will be concerned with essential uniqueness. A profile ✓⇤(·) is outside

the neighborhood of truthtelling if ✓⇤(·) and ✓T (·) are strictly ordered (i.e. ordered and

distinct), and if E
✓i [di

(✓⇤
i

(✓
i

), ✓
i

)] � E
✓j [dj

(✓⇤
j

(✓
j

), ✓
j

)] for all j implies that interval

(✓
i

, ✓⇤
i

(✓
i

)) or (✓⇤
i

(✓
i

), ✓
i

) — depending on which one is well defined — is nonempty for

some ✓
i

. In words, a profile is outside the neighborhood of truthtelling if it is strictly

larger or smaller than truthtelling, and if the agent that misreports the most on average

has the option to report a non-truthful type in between truth ✓
i

and her actual report

✓⇤
i

(✓
i

). In order for an agent to have this option, her original deception must be far

enough from truthtelling, for otherwise the only possible deviation would be to report

her type truthfully.

Definition 9 The truthful equilibrium is essentially unique if any profile ✓⇤(·) outside

the neighborhood of truthtelling is not an equilibrium.

According to essential uniqueness, only the profiles in the neighborhood of truth

telling can be equilibria. As type sets become finer, and "(⇥) ! 0, the neighborhood

of truthtelling collapses, and tends to be a single point.

Proposition 4 Let f be a supermodular implementable social choice function (on ⇥).

If for every agent i

(n� 1)E
✓i [K̄i

(✓
i

)] < E
✓�i [�i

(✓�i

)], 8 (5.4)

then there is " such that if "(⇥) < ", then the truthful equilibrium is essentially unique.

This proposition imposes two conditions, (5.4) and a richness requirement. Con-

dition (5.4) says that the uniqueness e↵ect dominates the multiplicity e↵ect. While

8Bounds Ki and �i depend on the underlying type sets.
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this captures the main driving force behind uniqueness, we must add the technical re-

quirement that type sets be su�ciently fine. Otherwise, some untruthful profiles can

become equilibria simply because some deviation is not available to an agent who would

have otherwise chosen it. This proposition generalizes Mathevet (25)’s uniqueness re-

sult (Proposition 3, p.418) to our environments. In continuous type spaces, richness is

obviously not an issue and only (5.4) matters.

For the sake of argument, assume that type sets are rich enough. At first the

proposition seems to be mostly useful a posteriori. After the mechanism has been

built, we can use it to check whether there is a unique equilibrium. However, it would

be useful to know beforehand whether the design problem at hand is compatible with

unique supermodular implementation given the primitives of the problem. Since our

minimally supermodular transfers minimize the size of the equilibrium set, they are a

natural choice for unique implementation. Moreover, they are entirely constructed from

primitives of the model. Therefore, we can use them within Proposition 4 to obtain

a condition that (i) can be checked before building the mechanism to (ii) determine

whether unique supermodular implementation is attainable based on the primitives of

the design problem. This allows us to draw conclusions about the type of environments

for which supermodular implementation may be most useful.

For any implementable social choice function f , denote

K⇤
i

(✓) = max
{✓00i ,✓

0
i,✓

00
�i,✓

0
�i}

V
i

(✓0
i

. ✓00
i

, ✓00�i

; ✓)� V
i

(✓0
i

. ✓00
i

, ✓0�i

; ✓)�H
i

(✓00
i

, ✓0
i

, ✓00�i

, ✓0�i

)

d
i

(✓00
i

, ✓0
i

)
P

j 6=i

d
j

(✓00
j

, ✓0
j

)
(5.5)

where V
i

(✓0
i

. ✓00
i

, ·; ✓) = V
i

(x
i

(✓00
i

, ·); ✓)� V
i

(x
i

(✓0
i

, ·); ✓) and H
i

is the sum of elements

min
✓2⇥

[V
i

(✓̂0
i

. ✓̂00
i

, ✓̂00�i

; ✓)� V
i

(✓̂0
i

. ✓̂00
i

, ✓̂0�i

; ✓)]

for all immediate successors ✓̂00
i

and ✓̂0
i

, going from ✓0
i

to ✓00
i

, and all immediate successors

✓̂00�i

and ✓̂0�i

, going from ✓0�i

to ✓00�i

. Define K̄⇤
i

(✓
i

) = max
✓�i K⇤

i

(✓). Given (5.5), note

that the value of K̄⇤
i

, which bounds the degree of complementarities under the minimally

supermodular transfers, depends only on the primitives of the model. When the designer

uses the minimally supermodular transfers, K̄⇤
i

is the value that appears in condition

(5.4). Hence, when computed with K̄⇤
i

as given by (5.5), inequality (5.4) becomes

a condition involving only the primitives of the model. If this inequality holds, then

supermodular implementation is particularly well-suited for the design problem at hand,

because the minimal transfers supermodularly implement the social choice function and

truthtelling is essentially unique.

Condition (5.5) has a nice interpretation. It measures how much the supermodu-
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larity of the valuations vary across true types. We know that the designer must induce

a supermodular game for any realization of types.9 A large K̄⇤
i

is caused by valuation

functions that produce large substitute e↵ects at some types (say ✓) and large com-

plementarities at others (say ✓0). Since the designer does not know the realization of

the true type, she will need to add a lot of complementarities through the transfers to

ensure that the game is supermodular at ✓. However, this may induce a game that is

“too supermodular” at ✓0 as there are already enough complementarities at that type,

which may cause multiplicity.

6 Conclusion

This paper extends supermodular mechanism design to environments with interdepen-

dent valuations, informational and allocative externalities, and arbitrary finite type

spaces. While realistic, these environments present a serious challenge to mechanism

designers. It is typically impossible to employ dominant strategy and ex post equi-

librium. This makes Bayesian implementation particularly relevant. In this context,

supermodular Bayesian mechanisms are attractive.

The main motivation behind our mechanism design approach is to facilitate conver-

gence to a desired equilibrium. This includes two problems: the robustness to bounded

rationality (i.e. learning) and the multiple equilibrium problem. Supermodular mecha-

nisms have nice learning properties, and the interval between their extremal equilibria

contains all the limit points of learning dynamics. To some extent, this interval “mea-

sures” the multiple equilibrium problem. Our methodology is to impose orders on type

sets, and given these orders, to induce a supermodular mechanism and to minimize its

interval prediction by weakening the complementarities. It is worth mentioning that

agents need not be aware of these orders. While the analyst can exploit the monotonic-

ity of agents’ best responses to derive convergence properties, agents need not know, or

be informed, that their best responses are monotonic. These orders are just a tool for

the designer. As a whole, our concerns have focused on behavioral robustness and left

other issues unanswered.

First, our mechanisms are parametric. The designer needs to know the common prior

beliefs to construct the mechanisms, which is demanding (Ledyard (23)). Moreover,

small mistakes with respect to prior beliefs might lead to shifts in equilibrium behavior

9It is su�cient but not necessary that the ex post game be supermodular for each realization in order
for the ex ante Bayesian game to be supermodular. For example, if the prior is mostly concentrated
on some subset ⇥0 of ⇥, it may not be necessary to make the ex post payo↵s supermodular for types
in ⇥\⇥0. Of course, the possibility of neglecting ⇥\⇥0 depends on how unlikely that set is compared
to how submodular the utility function may be for types in that set.
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and deviations from e�ciency. Along this line, the literature on robust mechanism

design (e.g. Bergemann and Morris (3)) advocates the use of ex post equilibrium.

However, as we have already said, this is not always possible in our environments.

Second, we have omitted the issue of budget balancing. Robustness to bounded

rationality may well come at the price of a balanced budget, i.e. full e�ciency. In Sec-

tion 7.1, we presented an example where starting from balanced transfers and multiple

equilibria, the designer could achieve dominance-solvability, hence uniqueness, and allo-

cation e�ciency but our transfers were not balanced. Reconciling budget balancing and

minimal supermodularity (or, in general, dominance solvability) would be optimal but

this is an open question. If both properties were exclusive in general, the designer would

be faced with a di�cult choice: balancing budget at the price of the implementation

target (in case players do not learn to play the desired equilibrium), or guaranteeing the

implementation target is reached at the price of a balanced budget. Further research is

needed to shed light on the eventual tension between robustness and full e�ciency.
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7 Appendix

7.1 Another Motivating Example

Consider the motivating example of Section 2. The designer may choose the following

balanced transfers to implement the e�cient decision rule:

t1(✓̂) (2, 1) (1, 2)

(2, 1) .12 .10

(1, 2) .01 .35

t2(✓̂) (2, 1) (1, 2)

(2, 1) -.12 -.10

(1, 2) -.01 -.35

Given these transfers, the resulting payo↵ matrix for the ex ante Bayesian game is

EU truthtelling constant (2,1) constant (1,2) always lie

truthtelling .14⇤; 0⇤ .1; -.04 .2; -.1 .2; -.2

constant (2,1) .1; -.1 .1⇤;0⇤ .1; -.1 .1; -.04

constant (1,2) 0;.02⇤ 0; -.01 .4⇤; -.2 .3⇤; -.3

always lie 0; 0 0; .04⇤ .3; -.2 .2;-.1

Both truthtelling and a constant announcement of (2,1) by both players are Bayesian

equilibria. If we instead use the supermodular transfers that add minimal complemen-

tarities

tSM

1 (✓̂) (2, 1) (1, 2)

(2, 1) .1 .1

(1, 2) .02 .2

tSM

2 (✓̂) (2, 1) (1, 2)

(2, 1) -.05 -.4

(1, 2) -.05 -.2

we obtain the ex ante payo↵ matrix:

EU truthtelling constant (2,1) constant (1,2) always lie

truthtelling .14⇤; 0⇤ .1;⇤ -.05 .1; -.1 .1; -.2

constant (2,1) .13; 0 .1; .1⇤ .1; -.4 .1; -.3

constant (1,2) .04; 0⇤ 0; -.05 .2⇤; -.1 .2⇤;-.1

always lie 0; 0 .02 .1⇤ .2; -.3 .2; -.2

Converting the original mechanism into a minimally supermodular mechanism has

solved the multiple equilibrium problem. Truthtelling is the unique Bayesian equi-

librium.

7.2 An Example of Linear System for Minimal Supermodular

Implementation

Consider a setting with n = 3 agents, and types in ⇥
i

= {1, 2} for all i. Assume the

conventional order 2 >1
i

1 for all i. For each player i, in order to minimally supermodular
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implement the decision rule x, we are interested in finding a solution to the following

system of linear equations:

0

BBBB@

1 �1 �1 1 0 0 0 0

1 �1 0 0 �1 1 0 0

0 0 1 �1 0 0 �1 1

0 0 0 0 1 �1 �1 1

1

CCCCA

0

BBBBBBBBBBBBBB@

�
i

(1, (1, 1))

�
i

(2, (1, 1))

�
i

(1, (1, 2))

�
i

(2, (1, 2))

�
i

(1, (2, 1))

�
i

(2, (2, 1))

�
i

(1, (2, 2))

�
i

(2, (2, 2))

1

CCCCCCCCCCCCCCA

=

0

BBBB@

�min
✓

X(✓)

�min
✓

Y (✓)

�min
✓

Z(✓)

�min
✓

W (✓)

1

CCCCA
.

where

X(✓) = V
i

(x
i

(2, (1, 2)); ✓)� V
i

(x
i

(1, (1, 2)); ✓)� V
i

(x
i

(2, (1, 1)); ✓) + V
i

(x
i

(1, (1, 1)); ✓)

Y (✓) = V
i

(x
i

(2, (2, 1)); ✓)� V
i

(x
i

(1, (2, 1)); ✓)� V
i

(x
i

(2, (1, 1)); ✓) + V
i

(x
i

(1, (1, 1)); ✓)

Z(✓) = V
i

(x
i

(2, (2, 2)); ✓)� V
i

(x
i

(1, (2, 2)); ✓)� V
i

(x
i

(2, (1, 2)); ✓) + V
i

(x
i

(1, (1, 2)); ✓)

W (✓) = V
i

(x
i

(2, (2, 2)); ✓)� V
i

(x
i

(1, (2, 2)); ✓)� V
i

(x
i

(2, (2, 1)); ✓) + V
i

(x
i

(1, (2, 1)); ✓).

Consider agent i 2 N , whose valuations are given by:

V
i

(·; ✓) (1, 1, 1) (1,1,2) (1,2,1) (2,1,1) (1,2,2) (2,1,2) (2,2,1) (2,2,2)

A 0 0 0 0 0 0 0 0

B 3 1 2 1 2 2 2 2

Let us assume the decision rule to be implemented is:

(1, 1, 1) (1,1,2) (1,2,1) (2,1,1) (1,2,2) (2,1,2) (2,2,1) (2,2,2)

x̃
i

(✓) B A A B B B B B

Then the rhs of the system becomes:

0

BBBB@

�min
✓

X

�min
✓

Y

�min
✓

Z

�min
✓

W

1

CCCCA
=

0

BBBB@

�1

�1

3

3

1

CCCCA

One possible solution for the system is �
i

= (0, 1, 0, 0, 1, 1, 0, 3)T .
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7.3 Proofs

Proof of Theorem 1 Take a consistent profile of orders {(�1
i

,�2
i

)}
i

. For every i 2 N ,

each element ✓
i

2 ⇥
i

is assigned an index k that corresponds to its position in the set

⇥
i

under the total order �1
i

. Similarly, each element ✓�i

2 ⇥�i

is assigned an index q

according to the total order order �2
i

on ⇥�i

. Suppose that f = (x, t) is implementable.

Letting

�
i

(✓̂k

i

, ✓̂q

�i

) ⌘ �
k�1X

l=1

q�1X

z=1

min
✓2⇥

[V
i

(x(✓̂l+1
i

, ✓̂z+1
�i

); ✓)� V
i

(x(✓̂l

i

, ✓̂z+1
�i

); ✓)

� V
i

(x(✓̂l+1
i

, ✓̂z

�i

); ✓) + V
i

(x(✓̂l

i

, ✓̂z

�i

); ✓)]. (7.1)

for all ✓̂k

i

2 ⇥
i

and ✓̂q

�i

2 ⇥�i

, we define

t⇤
i

(✓̂k

i

, ✓̂q

�i

) ⌘ �
i

(✓̂k

i

, ✓̂q

�i

)� E
✓�i [�i

(✓̂k

i

, ✓�i

)] + E
✓�i [ti(✓̂

k

i

, ✓�i

)] (7.2)

and show that (x, t⇤) is minimally supermodular implementable.

Step 1. We show that t⇤
i

has smaller one-step supermodularity than any t
i

such that

(x, t) is supermodular implementable.

Let us define the one-step supermodularity of V
i

(x(·); ✓) at any given announcement

(✓̂k

i

, ✓̂q

�i

) as

g
i

(k, q; ✓) ⌘ V
i

(x(✓̂k+1
i

, ✓̂q+1
�i

); ✓)� V
i

(x(✓̂k

i

, ✓̂q+1
�i

); ✓)

� V
i

(x(✓̂k+1
i

, ✓̂q

�i

); ✓) + V
i

(x(✓̂k

i

, ✓̂q

�i

); ✓). (7.3)

For notational simplicity, we define

d
i

(k, q) ⌘ min
✓2⇥
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i

(x(✓̂k+1
i

, ✓̂q+1
�i

); ✓)� V
i
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, ✓̂q+1
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); ✓)

�V
i

(x(✓̂k+1
i

, ✓̂q
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); ✓) + V
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, ✓̂q

�i

); ✓)]

= min
✓2⇥

g
i

(k, q; ✓). (7.4)

Since the one-step supermodularity of t⇤
i

is equivalent to the one-step supermodularity

of �
i

we have

s
i
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i
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)� �
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d
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(l, z) +
k�1X
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qX
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d
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d
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(l, z)�
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q�1X

z=1

d
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= �d
i

(k, q) (7.5)
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as the one-step supermodularity of t⇤
i

(and �
i

).

Therefore, the one-step supermodularity of (V
i

+ t⇤
i

) is given by

g
i

(k, q; ✓) + s
i

(k, q) � 0 (7.6)

for all ✓̂k

i

, ✓̂q

�i

, ✓, k, q, and i.

Denote the one-step supermodularity of transfer t
i

as sm1(ti; k, q), that is:

sm1(ti; k, q) = t
i

(✓̂k+1
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, ✓̂q+1
�i

)� t
i
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)� t
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, ✓̂q

�i
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For all transfers t such that (x, t) is supermodular implementable, it must hold that

g
i

(k, q; ✓) + sm1(ti; k, q) � 0 for all ✓ 2 ⇥, which is equivalent to:

sm1(ti; k, q) � �min
✓2⇥
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); ✓)] = s
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(k, q). (7.7)

The above shows that if (x, t) is supermodular implementable then the one-step super-

modularity of transfers t is necessarily (weakly) greater than the one-step supermodu-

larity of transfers t⇤, which establishes Step 1.

Step 2. We show that the (multiple-step) supermodularity of any function of two

variables is a sum of one-step supermodularities. Let us define the “(⌘, �)-step super-

modularity” of any function t
i

(✓̂k

i

, ✓̂q

�i

) as
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Note that

t
i

(✓̂k+⌘

i

, ✓̂q+�

�i

) = sm1(ti; k + ⌘ � 1, q + � � 1) + t
i

(✓̂k+⌘�1
i

, ✓̂q+�

�i

)

+ t
i

(✓̂k+⌘

i

, ✓̂q+��1
�i

)� t
i

(✓̂k+⌘�1
i

, ✓̂q+��1
�i

), (7.9)

and so it follows from (7.8) that
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Note that
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and therefore it follows from (7.10) that
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which is equal to

2X

n=1

sm1(ti; k + ⌘ � n, q + � � 1) + t
i

(✓̂k+⌘�2
i

, ✓̂q+�

�i

)� t
i

(✓̂k+⌘�2
i

, ✓̂q+��1
�i

)

+ t
i

(✓̂k+⌘

i

, ✓̂q+��1
�i

)� t
i

(✓̂k

i

, ✓̂q+�

�i

)� t
i

(✓̂k+⌘

i

, ✓̂q

�i

) + t
i

(✓̂k

i

, ✓̂q

�i

). (7.13)

Proceeding iteratively with this process of substitution and regrouping of terms for

n = (1, . . . , ⌘) we obtain

SM(⌘,�)(ti; k, q) =
⌘X

n=1

sm1(ti; k + ⌘ � n, q + � � 1) + t
i

(✓̂k

i

, ✓̂q+�

�i

)� t
i

(✓̂k

i

, ✓̂q+��1
�i

)

+ t
i

(✓̂k+⌘

i

, ✓̂q+��1
�i

)� t
i

(✓̂k

i

, ✓̂q+�

�i

)� t
i

(✓̂k+⌘

i

, ✓̂q

�i

) + t
i

(✓̂k

i

, ✓̂q

�i

)

=
⌘X

n=1

sm1(ti; k + ⌘ � n, q + � � 1)

+ t
i

(✓̂k+⌘

i

, ✓̂q+��1
�i

)� t
i

(✓̂k

i

, ✓̂q+��1
�i

)� t
i

(✓̂k+⌘

i

, ✓̂q

�i

) + t
i

(✓̂k

i

, ✓̂q

�i

)

=
⌘X

n=1

sm1(ti; k + ⌘ � n, q + � � 1) + SM(⌘,��1)(ti; k, q). (7.14)
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Iterrating on Equation (7.14) for m = 1, . . . , � � 1 we obtain:

SM(⌘,�)(ti; k, q) =
⌘X

n=1

sm1(ti; k + ⌘ � n, q + � � 1) + SM(⌘,��1)(ti; k, q)

=
⌘X

n=1

sm1(ti; k + ⌘ � n, q + � � 1) +
⌘X

n=1

sm1(ti; k + ⌘ � n, q + � � 2) + SM(⌘,��2)(ti; k, q)

=
⌘X

n=1

��1X

m=1

sm1(ti; k + ⌘ � n, q + � �m) + SM(⌘,1)(ti; k, q). (7.15)

Now, using the fact that

SM(⌘,1)(k, q) = t
i

(✓̂k+⌘

i

, ✓̂q+1
�i

)� t
i

(✓̂k

i

, ✓̂q+1
�i

)� t
i

(✓̂k+⌘

i

, ✓̂q

�i

) + t
i

(✓̂k

i

, ✓̂q

�i

)

= sm1(ti; k + ⌘ � 1, q) + SM(⌘�1,1)(ti; k, q)

=
P

⌘

n=1 sm1(ti; k + ⌘ � n, q)

and plugging this into Equation (7.15) we obtain

SM(⌘,�)(ti; k, q) =
⌘X

n=1

��1X

m=1

sm1(ti; k + ⌘ � n, q + � �m) +
⌘X

n=1

sm1(ti; k + ⌘ � n, q)

=
⌘X

n=1

�X

m=1

sm1(ti; k + ⌘ � n, q + � �m)

=
k+⌘�1X

l=k

q+��1X

z=q

sm1(ti; l, z). (7.16)

Thus, the multiple-step supermodularity of any function of two ordered variables is

equal to the sum of one-step supermodularities, which establishes Step 2.

Step 3. Conclusion. Note that

E
✓�i [t

⇤
i

(✓̂k

i

, ✓�i

)] = E
✓�i [�i

(✓̂k

i

, ✓�i

)]�E
✓�i [�i

(✓̂k

i

, ✓�i

)]+E
✓�i [ti(✓̂

k

i

, ✓�i

)] = E
✓�i [ti(✓̂

k

i

, ✓�i

)]

(7.17)

and therefore transfers t
i

and t⇤
i

have the same expected value given that all other

agents report their types truthfully. That is, assuming truthful reporting, the expected

utility of an agent is the same under t
i

and t⇤
i

. Since (x, t) is truthfully implementable,

the above implies that (x, t⇤) is also truthfully implementable.

Using the result eshablished in Step 2, the (⌘, �)-step supermodularity of V
i

(x(·); ✓)
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at any given announcement (✓̂k

i

, ✓̂q

�i

) can now be written as:

G
(⌘,�)
i

(k, q; ✓) = V
i

(x(✓̂k+⌘

i

, ✓̂q+�

�i

); ✓)� V
i

(x(✓̂k

i

, ✓̂q+�

�i

); ✓)

�V
i

(x(✓̂k+⌘

i

, ✓̂q

�i

); ✓) + V
i

(x(✓̂k

i

, ✓̂q

�i

); ✓)

=
k+⌘�1X

l=k

q+��1X

z=q

g
i

(l, z; ✓). (7.18)

and the (⌘, �)-step supermodularity of t⇤
i

is analogously given by

S
(⌘,�)
i

(k, q) = �
i

(✓̂k+⌘

i

, ✓̂q+�

�i

)� �
i

(✓̂k

i

, ✓̂q+�

�i

)� �
i

(✓̂k+⌘

i

, ✓̂q

�i

) + �
i

(✓̂k

i

, ✓̂q

�i

)

= �
k+⌘�1X

l=1

q+��1X

z=1

d
i

(l, z) +
k�1X

l=1

q+��1X

z=1

d
i

(l, z) +
k+⌘�1X

l=1

q�1X

z=1

d
i

(l, z)�
k�1X

l=1

q�1X

z=1

d
i

(l, z)

= �
k+⌘�1X

l=k

q+��1X

z=q

d
i

(l, z). (7.19)

It is straightforward to check that G
(⌘,�)
i

(k, q; ✓)+S
(⌘,�)
i

(k, q) � 0 for all ✓̂k

i

, ✓̂q

�i

, ✓, k, q, ⌘, �

and i and, therefore, t⇤ is supermodular implementable.

Moreover, Step 1 says that t⇤ has the smallest one-step supermodularity among

all supermodular transfers t. Combined with Step 2, this establishes that t⇤ has the

smallest (⌘, �)-step supermodularity for any (⌘, �) among all supermodular transfers

t. Thus we conclude that (x, t⇤) is minimally supermodular implementable under the

chosen order profile {(�1
i

,�2
i

)}
i

. Q.E.D

Proof of Corollary 1 In the proof of Theorem 1, we constructed transfers that min-

imally supermodular implemented the decision rule x under some chosen consistent

profile of orders {(�1
i

,�2
i

)}
i

. Each (�1
i

,�2
i

) is a pair of complete orders on finite sets.

Since there are finitely many agents, for each i there are finitely many complete or-

ders, and consequently, finitely many consistent profiles. For each such profile, we can

compute the distance between the largest and the smallest equilibrium in the ex ante

induced game under the minimal transfers, using a metric d. Among all consistent pro-

files of orders we can thus choose the one associated with the smallest interval prediction

as measured by d: denote this profile of orders by {(�⇤1
i

,�⇤2
i

)}
i

and the corresponding

minimal transfers by t⇤⇤. Therefore, t⇤⇤ give the smallest interval prediction under d

among all minimally supermodular transfers on consistent profiles of orders. Q.E.D

Proof of Theorem 2 Suppose f = (x, t) is implementable and x is order reducible. For

every i 2 N , assign each element ✓
i

2 ⇥
i

an index k that corresponds to its position in
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the set ⇥
i

under the total order �1
i

. Since x is order reducible, each element ✓�i

2 ⇥�i

can be assigned an index p according to the group Gi

p

to which it belongs. That is,

more than one element ✓�i

can be assigned the same index p, as all the elements in

group G
p

share the same index p. Letting

�
i

(✓k

i

, ✓p

�i

) = �
k�1X

l=1

p�1X

z=1

min
✓2⇥

[V
i

(x(✓l+1
i

, ✓z+1
�i

), ✓)� V
i

(x(✓l

i

, ✓z+1
�i

), ✓)

� V
i

(x(✓l+1
i

, ✓z

�i

), ✓) + V
i

(x(✓l

i

, ✓z

�i

), ✓)] (7.20)

for all ✓k

i

2 ⇥
i

and ✓p

�i

2 ⇥�i

, we define

to
i

(✓k

i

, ✓p

�i

) = �
i

(✓k

i

, ✓p

�i

)� E
✓�i [�i

(✓k

i

, ✓�i

)] + E
✓�i [ti(✓

k

i

, ✓�i

)] (7.21)

and show that (x, to) is minimally supermodular implementable.

Note that E
✓�i [t

o

i

(✓k

i

, ✓�i

)] = E
✓�i [ti(✓

k

i

, ✓�i

)] and thus (x, to) is truthfully imple-

mentable. Moreover, the supermodularity of to
i

(✓k

i

, ✓p

�i

) is equal to the supermodu-

larity of �
i

(✓k

i

, ✓p

�i

). We proceed to show in separate steps of the proof that trans-

fers to achieve minimal supermodularities across immediate successors on (⇥
i

,�1
i

) and

(⇥�i

,��i

) (Step 1) and that the supermodularities of to
i

across (multiple-step) succes-

sive types are sums of supermodularities between immediate (one-step) successors (Step

2).

Step 1. Consider any two pairs of immediate successors ✓00
i

�1
i

✓0
i

and ✓00�i

��i

✓0�i

.

As they are immediate successors, we can instead write ✓k+1
i

�1
i

✓k

i

. The (one-step)

supermodularity of to
i

is

to
i

(✓k+1
i

, ✓00�i

)� to
i

(✓k

i

, ✓00�i

)� to
i

(✓k+1
i

, ✓0�i

) + to
i

(✓k

i

, ✓0�i

) =

�
i

(✓k+1
i

, ✓00�i

)� �
i

(✓k

i

, ✓00�i

)� �
i

(✓k+1
i

, ✓0�i

) + �
i

(✓k

i

, ✓0�i

). (7.22)

Since x is order reducible and ✓00�i

��i

✓0�i

are immediate successors, it must be that

either ✓0�i

, ✓00�i

2 Gi

p

or ✓0�i

2 Gi

p

and ✓00�i

2 Gi

p+1.

Case 1. If ✓0�i

, ✓00�i

2 Gi

p

, then by order reducibility, x(✓
i

, ✓0�i

) = x(✓
i

, ✓00�i

) for all ✓
i

and

we obtain

V
i

(x(✓k+1
i

, ✓00�i

); ✓)�V
i

(x(✓k

i

, ✓00�i

); ✓)�V
i

(x(✓k+1
i

, ✓0�i

); ✓)+V
i

(x(✓k

i

, ✓0�i

); ✓) = 0. (7.23)

Using equation (7.20) for �
i

we have that �
i

(✓
i

, ✓0�i

) = �
i

(✓
i

, ✓00�i

) = �
i

(✓
i

, ✓p

�i

) for all ✓
i

.
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The supermodularity of to
i

hence becomes:

to
i

(✓k+1
i

, ✓00�i

)� to
i

(✓k

i

, ✓00�i

)� to
i

(✓k+1
i

, ✓0�i

) + to
i

(✓k

i

, ✓0�i

) =

�
i

(✓k+1
i

, ✓p

�i

)� �
i

(✓k

i

, ✓p

�i

)� �
i

(✓k+1
i

, ✓p

�i

) + �
i

(✓k

i

, ✓p

�i

) = 0. (7.24)

Hence, for all t
i

such that (x, t) is supermodular implementable it must hold that:

t
i

(✓k+1
i

, ✓00�i

)� t
i

(✓k

i

, ✓00�i

)� t
i

(✓k+1
i

, ✓0�i

) + t
i

(✓k

i

, ✓0�i

) �

�min
✓

[V
i

(x(✓k+1
i

, ✓00�i

); ✓)� V
i

(x(✓k

i

, ✓00�i

); ✓)� V
i

(x(✓k+1
i

, ✓0�i

); ✓) + V
i

(x(✓k

i

, ✓0�i

); ✓)]

= 0 = to
i

(✓k+1
i

, ✓00�i

)� to
i

(✓k

i

, ✓00�i

)� to
i

(✓k+1
i

, ✓0�i

) + to
i

(✓k

i

, ✓0�i

). (7.25)

Therefore, for all i and immediate successors ✓0�i

, ✓00�i

2 Gi

p

, transfers to
i

have the smallest

one-step supermodularity.

Case 2. If ✓0�i

2 Gi

p

and ✓00�i

2 Gi

p+1, using equation (7.20) to obtain the supermodularity

of to
i

we get

to
i

(✓k+1
i

, ✓00�i

)� to
i

(✓k

i

, ✓00�i

)� to
i

(✓k+1
i

, ✓0�i

) + to
i

(✓k

i

, ✓0�i

) =

�
i

(✓k+1
i

, ✓p+1
�i

)� �
i

(✓k

i

, ✓p+1
�i

)� �
i

(✓k+1
i

, ✓p

�i

) + �
i

(✓k

i

, ✓p

�i

) =
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✓

[V
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(x(✓k+1
i

, ✓p+1
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); ✓)� V
i

(x(✓k

i

, ✓p+1
�i

); ✓)� V
i

(x(✓k+1
i

, ✓p

�i

); ✓) + V
i

(x(✓k

i

, ✓p

�i

); ✓)] =

�min
✓

[V
i

(x(✓k+1
i

, ✓00�i

); ✓)� V
i

(x(✓k

i

, ✓00�i

); ✓)� V
i

(x(✓k+1
i

, ✓0�i

); ✓) + V
i

(x(✓k

i

, ✓0�i

); ✓)].

(7.26)

Hence, for all t
i

such that (x, t) is supermodular implementable it must hold that:

t
i

(✓k+1
i

, ✓00�i

)� t
i

(✓k

i

, ✓00�i

)� t
i

(✓k+1
i

, ✓0�i

) + t
i

(✓k

i

, ✓0�i

) �

�min
✓

[V
i

(x(✓k+1
i

, ✓00�i

); ✓)� V
i

(x(✓k

i

, ✓00�i

); ✓)� V
i

(x(✓k+1
i

, ✓0�i

); ✓) + V
i

(x(✓k

i

, ✓0�i

); ✓)]

= to
i

(✓k+1
i

, ✓00�i

)� to
i

(✓k

i

, ✓00�i

)� to
i

(✓k+1
i

, ✓0�i

) + to
i

(✓k

i

, ✓0�i

). (7.27)

Therefore, for all i and immediate successors ✓0�i

2 Gi

p

and ✓00�i

2 Gi

p+1, transfers to
i

have

the smallest one-step supermodularity.

Cases 1 and 2 allow us to conclude that transfers to achieve minimal supermodular-

ities across any pair of immediate successors on (⇥
i

,�1
i

) and (⇥�i

,��i

), as long as x

is order reducible.

Step 2. Consider the supermodularity between successive types ✓k

i

, ✓k+q

i

and ✓0�i

2
Gi

p

, ✓00�i

2 Gi

p+m

. For q = 1 and m = 1 (or m = 0) this would reduce to the case of

supermodularities between immediate successors considered in Step 1. Using equation
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(7.20), we obtain

to
i

(✓k+q

i

, ✓00�i

)� to
i

(✓k

i

, ✓00�i

)� to
i

(✓k+q

i

, ✓0�i

) + to
i

(✓k

i

, ✓0�i

) =

�
i

(✓k+q

i

, ✓p+m

�i

)� �
i

(✓k

i

, ✓p+m

�i

)� �
i

(✓k+q

i

, ✓p

�i

) + �
i

(✓k

i

, ✓p

�i

) =

�
k+q�1X

l=k

p+m�1X

z=p

min
✓2⇥

[V
i

(x(✓l+1
i

, ✓z+1
�i

), ✓)� V
i

(x(✓l

i

, ✓z+1
�i

), ✓)

� V
i

(x(✓l+1
i

, ✓z

�i

), ✓) + V
i

(x(✓l

i

, ✓z

�i

), ✓)]. (7.28)

Hence, the q, m-step supermodularity of transfers to
i

is a sum of all the one-step super-

modularities between the groups G
p

and G
p+m

. We next show that this sum between

the groups is equivalent to a sum of minimal one-step supermodularities on ⇥
i

⇥ ⇥�i

,

all of which need to be minimized for minimal supermodular implementation to hold.

Take a sequence ✓k

i

, . . . , ✓k+q

i

of immediate successors under �1
i

, and a sequence

✓1
�i

, . . . , ✓1+s

�i

of immediate successors under ��i

such that ✓1
�i

= ✓0�i

and ✓1+s

�i

= ✓00�i

.

Since ✓0�i

2 Gi

p

, ✓00�i

2 Gi

p+m

, and x is order reducible, it cannot be that ✓00�i

is more that

s groups away from ✓0�i

, i.e. it must be that s � m.

Case 1. If m = s, then

to
i

(✓k+q

i

, ✓00�i

)� to
i

(✓k

i

, ✓00�i

)� to
i

(✓k+q

i
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) = (7.29)
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, ✓z+1
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), ✓)� V
i

(x(✓l

i

, ✓z+1
�i

), ✓)

�V
i

(x(✓l+1
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, ✓z

�i

), ✓) + V
i

(x(✓l

i

, ✓z
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), ✓)] = (7.30)

�
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i

(x(✓l+1
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, ✓̂w+1
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), ✓)� V
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), ✓)

�V
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(x(✓l+1
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, ✓w
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), ✓) + V
i

(x(✓l
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, ✓w

�i

), ✓)]. (7.31)

Since the supermodularity of V
i

is equal to

k+q�1X

l=k

s�1X

w=1

[V
i

(x(✓l+1
i

, ✓w+1
�i

), ✓)� V
i

(x(✓l

i

, ✓w+1
�i

), ✓)

� V
i

(x(✓l+1
i

, ✓w

�i

), ✓) + V
i

(x(✓l

i

, ✓w

�i

), ✓)] (7.32)

and all of the summands involve one-step supermodularities, it holds that

V
i

(x((✓k+q

i

, ✓00�i

), ✓)� V
i

(x(✓k

i

, ✓00�i

), ✓)� V
i

(x(✓k+q

i

, ✓0�i

), ✓) + V
i

(x(✓k

i

, ✓0�i

), ✓)]

+ [to
i

(✓k+q
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, ✓00�i

)� to
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(✓k
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, ✓00�i

)� to
i

(✓k+q

i

, ✓0�i

) + to
i

(✓k
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, ✓0�i

)] � 0 (7.33)
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and the multiple-step supermodularity of to
i

is the smallest possible, so that all one-steps

are minimally supermodular.

Case 2. If s > m, it means that s � m immediate successors ✓̃00�i

under ��i

are in

the same category as their immediate predecessors ✓̃0�i

and are disregarded in the sum

(7.30). However, note that for all of these successors, it holds that:

V
i

(x((✓k+1
i

, ✓̃00�i

), ✓) � V
i

(x(✓k

i

, ✓̃00�i

), ✓) � V
i

(x(✓k+1
i

, ✓̃0�i

), ✓) + V
i

(x(✓k

i

, ✓̃0�i

), ✓)] = 0

(7.34)

and hence equality between (7.30) and (7.31) prevails. The rest of the argument for

this case follows that for case 1.

Steps 1 and 2 prove that transfers to
i

minimally supermodular implement the decision

rule x under the chosen profile of total orders {�1
i

}
i

.

Proof of Proposition 3 By way of contradiction, suppose that profile ✓⇤(·) � ✓T (·) is

an equilibrium so that player i’s best response to ✓⇤�i

(·) is ✓⇤
i

(·). Thus, for all i, ✓
i

, and

✓̂
i

such that ✓⇤
i

(✓
i

) >1
i
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i

�1
i

✓
i

, the following must hold
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We will show that this condition is not satisfied if the inequality in the theorem holds,

i.e. there must be a player for whom a deception closer to the truthful strategy is

strictly better than ✓⇤
i

(·). For simplicity, define10
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It follows from (5.1) and the definition of K̄
i

(✓
i

) that for each i and ✓
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:
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Since the social choice function (x, t) is implementable, the transfers {t
i

} induce truth-

ful revelation. Therefore, it must be that for all i and ✓
i

the incentive compatibility

constraint is satisfied, that is:
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10The notation we used in Equation (5.5) becomes cumbersome in this proof, and so we replace
Vi(✓̂i . ✓

⇤
i (✓i), ✓�i; ✓̂i, ✓�i) with �Vi(✓�i; ✓̂i, ✓�i).
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Thus, we obtain
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where the first inequality is derived after substituting in the LHS of (7.38) and the

second inequality follows from (5.2). Combining (7.37) and (7.39), we arrive at
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then by (7.40) E
✓�i [�u

i
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); ✓)] < 0, which contradicts (7.35). Therefore, ✓⇤(·) is

not a Bayesian equilibrium.

The same reasoning applies when ✓⇤(·)  ✓T (·): if the condition of the theorem

holds, ✓⇤(·) cannot be a Bayesian equilibrium. Q.E.D

Proof of Proposition 4 Take any profile ✓⇤(·) � ✓T (·) such that E
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. Since the scf is super-

modular implementable, there exist a smallest and a largest equilibrium. By way of

contradiction, suppose that ✓⇤(·) is the largest equilibrium. Then, for all i and ✓
i

, the

following must hold:
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for all deceptions ✓̂
i
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for all i. Since ✓⇤(·) is an equilibrium, the rhs of (7.43) must be nonnegative for all i,

✓
i

and ✓̂
i

(·). Thus, if we fix any deception ✓̂
i

(·), the expected value (over ✓
i

) of the rhs

of (7.43) must be nonnegative for all i. We will show that there is an agent i and a
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strategy ✓̂
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By the definition of a metric,
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Since there are only finitely many profiles ✓⇤(·) (outside the neighborhood of truthtelling;

see Definition 9) – because types are finite – we can choose a uniform " such that (7.46)

holds, starting from any such profile. By assumption, ✓⇤(·) was defined to be far enough

from truthtelling, i.e. (✓
i

, ✓⇤
i

(✓
i

)) 6= ; for some ✓
i

. Consequently, it follows from "(⇥) < "

that a deception ✓̂
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(·) 6= ✓⇤
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(·) can be chosen such that E
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))] < ". In this

case, (7.46) must hold, and thus i has an incentive to deviate from ✓⇤
i

(·). Profile ✓⇤(·)
is not an equilibrium. An analogous argument applies to the case when ✓⇤(·)  ✓T (·).
Hence, ✓T (·) is essentially unique. Q.E.D
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